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Data ingestion
• CSV/json from retailers to BigQuery
• Analyses use BQ & GCS for I/O
−Fast models: rerun
−Pretrained models
oCoefficients in tables
oStatic config and storage

• Workflows: Cadence & Apache Beam
• Publish to a new set of tables in CH
• Generated queries to CH serve FE

Separation of workflow and 
online processing



Schema (approximately)

CREATE TABLE promotion_RETAILER (
{item_id, promotion_id, store_id} LowCardinality(String),
week Date,
{baseline,sales,gross_lift,net_lift} Float64,
-- promotion fields: name, displays, offer specification
-- item/store fields: name, brand, attributes
-- secondary metrics: cross-effects

) ENGINE = ReplacingMergeTree PARTITION BY tuple()()
ORDER BY (item_id, promotion_id, store_id, week)
; CREATE TABLE promotion_dimension_RETAILER (

-- data fields to recreate promotion
) … ORDER BY promotion_id



PLAN module
• Move batch→online scenario planning
• Replicate analyses without workflows
• Dual challenge of model: Input & Output
• Input: different data made available in CH
• Output: support all CRUD operations
• Focus on Output part in this talk
• Extra field plan_id part of all filters



Geometric problem space 
and incremental

solutions

Our CRUDy OLAP problem
• Many rows (1000’s) for each upsert
• Update different tables
• Atomic data visibility on return
• (reduce dependence on CH atomicity)
• Want to keep schema for querying
• Keep data across weekly runs
• Conclusion: similar table + tricks
• Bonus: keep track of history



Trick 1: append only
• Common and excellent pattern
• Add version Int64 field
• Filter version=MAX(version) OVER (key)
• On inserts use version = MAX(version)+1
• Concurrent updates could get same version
• Relies on ClickHouse atomicity
• Scanning whole table



Trick 2: postgres sequence

• Concurrent updates
• Local locks incompatible with scaling instances
• postgres sequence for versions
• postgres locks to avoid concurrency
−Take lock on row corresponding to this plan

• Hold lock for writing only, not reading or forecast



Trick 3: versions KV-table

• Started with map promotion_id to version
• Queries don’t need to search for MAX(version)
• Aborted partial writes ignored
• Delete by setting version = 0
• Later redesigned: also key by plan_id
−Allows moving/copying promotions between plans
−More metadata



Querying combined tables

(
SELECT * FROM promotion_1
WHERE historic
UNION ALL
SELECT * EXCEPT(version, plan_id)
FROM promotion_plan_1
WHERE
((plan_id, promotion_id), version) IN

(SELECT (key, version)
FROM promotion_versions_1)

AND plan_id=?
) AS promotion

Functions to get table 
names expanded
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Extras



Querying extras

• Querying evolution
− Started off getting metrics from graphQL

− Moved on to custom tabular API aggregating along different dimensions

• Filtering: builder types in go
− Common filter input type generated in graphQL

− Different functions for different dimensions

− Refactor to use dimension tables to filter each separately

• Avoid using SELECT * due to schema updates
− Dynamically generate expressions from schema type

− When adding a new field, always add default expressions

− Use hasColumnInTable to switch between default and stored value


