CRUDy OLAP

saving, revising, and slicing large
forecasts on the fly

Devi Borg, Formulate by RELEX, 2022-12-01, Stockholm

History

on13 or 2016 onzo onzz

- Formulate | ljointhe | acquired
. founded - team - by
= = - RELEX

start using PLAN
- ClickHouse : (crRupy OLAP)

02018 62021

Data ingestion

* CSV/json from retailers to BigQuery
'AnalySGS use BQ & GCS fOF I/O Separation of workflow and

online processing

—Fast models: rerun

—Pretrained models
oCoefficients in tables
oStatic config and storage

* Workflows: Cadence & Apache Beam
* Publish to a new set of tables in CH
* Generated queries to CH serve FE

Schema (approximately)

CREATE TABLE promotion_RETAILER (
{item_id, promotion_id, store_id} LowCardinality(String),
week Date,

{baseline,sales,gross_lift,net_1lift} Float64,

—— promotion fields: name, displays, offer specification
—— item/store fields: name, brand, attributes
—— secondary metrics: cross—effects

) ENGINE = ReplacingMergeTree PARTITION BY tuple() ()

ORDER BY (item_id, promotion_id, store_id, week)

; CREATE TABLE promotion_dimension_ RETAILER (

—— data fields to recreate promotion

) .. ORDER BY promotion_id

PLAN module

* Move batch—online scenario planning

* Replicate analyses without workflows

* Dual challenge of model: Input & Output
* Input: different data made available in CH
* Qutput: support all CRUD operations

* Focus on Output part in this talk

 Extra field plan_1d part of all filters

B Main Plan v

Filter Presets v

TruelLift sales v

TruelLift profit v

Save Date 2022-01-01-2023-02

2022-11-21 Week 47

FRESH & FRUIT

Chilean Salmon Portion Pack

-33%

Selected Ribeye Steak

3 for 18.59 EUR

Premium Ground Beef 93%
2000g

3 for 12.99 EUR

Our CRUDy OLAP problem

* Many rows (1000’s) for each upsert

Geometric problem space

* Update different tables ard meremental
+ Atomic data visibility on return
* (reduce dependence on CH atomicity)
* Want to keep schema for querying

» Keep data across weekly runs

» Conclusion: similar table + tricks

* Bonus: keep track of history

Trick 1: append only

« Common and excellent pattern

*Add version Int64 field

« Filter version=MAX(version) OVER (key)
*On inserts use version = MAX(version)+1

.

« Concurrent updates could get same version
* Relies on ClickHouse atomicity
* Scanning whole table

Trick 2: postgres sequence

« Concurrent updates

* Local locks incompatible with scaling instances
* postgres sequence for versions

* postgres locks to avoid concurrency

—Take lock on row corresponding to this plan

* Hold lock for writing only, not reading or forecast

Trick 3: versions KV-table

» Started with map promotion_idto version

* Queries don’t need to search for MAX(version)
* Aborted partial writes ignored

* Delete by setting version = 0

* Later redesigned: also key by plan_id

—Allows moving/copying promotions between plans
—More metadata

Querying combined tables

SELECT *x FROM promotion_1
WHERE historic names expanded
UNION ALL
SELECT % EXCEPT(version, plan_id)
FROM promotion_plan_1
WHERE
((plan_id, promotion_id), version) IN
(SELECT (key, version)
FROM promotion_versions_1)
AND plan_1id=7?
) AS promotion

Functions to get table

3@ RELEX

Thank you!

(ps we’re hiring)

Devi Borg
devi.borg@relexsolutions.com
Robin Bartholdson

robin.bartholdson@relexsolutions.com

www.relexsolutions.com ¥ @RelexSolutions [RELEX Solutions

mailto:devi.borg@relexsolutions.com
mailto:robin.bartholdson@relexsolutions.com

7
(O
i)
>
LLI

Querying extras

* Querying evolution

— Started off getting metrics from graphQL

— Moved on to custom tabular APl aggregating along different dimensions
* Filtering: builder types in go

— Common filter input type generated in graphQL

— Different functions for different dimensions

— Refactor to use dimension tables to filter each separately g
 Avoid using SELECT * due to schema updates

— Dynamically generate expressions from schema type

— When adding a new field, always add default expressions

— Use hasColumnInTable to switch between default and stored value

