
CRUDy OLAP
saving, revising, and slicing large 
forecasts on the fly

Devi Borg, Formulate by RELEX, 2022-12-01, Stockholm



History

Formulate 
founded

2013 or 2016

start using 
ClickHouse
2018

I join the 
team

2020

PLAN 
(CRUDy OLAP)

2021

acquired 
by 
RELEX

2022



Data ingestion
• CSV/json from retailers to BigQuery
• Analyses use BQ & GCS for I/O
−Fast models: rerun
−Pretrained models
oCoefficients in tables
oStatic config and storage

• Workflows: Cadence & Apache Beam
• Publish to a new set of tables in CH
• Generated queries to CH serve FE

Separation of workflow and 
online processing



Schema (approximately)

CREATE TABLE promotion_RETAILER (
{item_id, promotion_id, store_id} LowCardinality(String),
week Date,
{baseline,sales,gross_lift,net_lift} Float64,
-- promotion fields: name, displays, offer specification
-- item/store fields: name, brand, attributes
-- secondary metrics: cross-effects

) ENGINE = ReplacingMergeTree PARTITION BY tuple()()
ORDER BY (item_id, promotion_id, store_id, week)
; CREATE TABLE promotion_dimension_RETAILER (

-- data fields to recreate promotion
) … ORDER BY promotion_id



PLAN module
• Move batch→online scenario planning
• Replicate analyses without workflows
• Dual challenge of model: Input & Output
• Input: different data made available in CH
• Output: support all CRUD operations
• Focus on Output part in this talk
• Extra field plan_id part of all filters



Geometric problem space 
and incremental

solutions

Our CRUDy OLAP problem
• Many rows (1000’s) for each upsert
• Update different tables
• Atomic data visibility on return
• (reduce dependence on CH atomicity)
• Want to keep schema for querying
• Keep data across weekly runs
• Conclusion: similar table + tricks
• Bonus: keep track of history



Trick 1: append only
• Common and excellent pattern
• Add version Int64 field
• Filter version=MAX(version) OVER (key)
• On inserts use version = MAX(version)+1
• Concurrent updates could get same version
• Relies on ClickHouse atomicity
• Scanning whole table



Trick 2: postgres sequence

• Concurrent updates
• Local locks incompatible with scaling instances
• postgres sequence for versions
• postgres locks to avoid concurrency
−Take lock on row corresponding to this plan

• Hold lock for writing only, not reading or forecast



Trick 3: versions KV-table

• Started with map promotion_id to version
• Queries don’t need to search for MAX(version)
• Aborted partial writes ignored
• Delete by setting version = 0
• Later redesigned: also key by plan_id
−Allows moving/copying promotions between plans
−More metadata



Querying combined tables

(
SELECT * FROM promotion_1
WHERE historic
UNION ALL
SELECT * EXCEPT(version, plan_id)
FROM promotion_plan_1
WHERE
((plan_id, promotion_id), version) IN

(SELECT (key, version)
FROM promotion_versions_1)

AND plan_id=?
) AS promotion

Functions to get table 
names expanded



Thank you!

@RelexSolutions RELEX Solutionswww.relexsolutions.com
© Retail Logistics Excellence - RELEX Oy. All rights reserved. RELEX and its logo are trademarks of RELEX. Other names of companies and products mentioned herein may be the trademarks of their respective owners.
This document contains information of confidential and proprietary nature. All information contained herein must be kept in confidence and is provided for the original recipient’s use only.

Devi Borg
devi.borg@relexsolutions.com
Robin Bartholdson
robin.bartholdson@relexsolutions.com

(ps we’re hiring)

mailto:devi.borg@relexsolutions.com
mailto:robin.bartholdson@relexsolutions.com


Extras



Querying extras

• Querying evolution
− Started off getting metrics from graphQL

− Moved on to custom tabular API aggregating along different dimensions

• Filtering: builder types in go
− Common filter input type generated in graphQL

− Different functions for different dimensions

− Refactor to use dimension tables to filter each separately

• Avoid using SELECT * due to schema updates
− Dynamically generate expressions from schema type

− When adding a new field, always add default expressions

− Use hasColumnInTable to switch between default and stored value


