ClickHouse Projections, ETL and more

$BR#H &+, Amos Bird (Ph.D), zhengtiangi@kuaishou.com

08

LI

About me

* Active ClickHouse Contributor
* ~300 valid PRs
* ~40 Stack Overflow Answers
* Doing some code reviews occasionally https://github.com/amosbird
* Helping new ClickHouse developers

* Graduated from ICT CAS with a Ph.D degree in database

* Currently @kuaishou Data Platform Department

QOutline

* Projections (MaterializedView In part-level)

* ClickHouse-ETL (Design new systems based on ClickHouse)
* Other Improvements

* Looking into the future

oz 3 RN M

The Name of "Projection’

* Originated from Vertica (Don't confuse it with SQL Projection Op)
* Projections are collections of table columns,
* Projections store data In a format that optimizes query execution

* Qur projection v.s Vertica
* MergeTreex table == Vertica's super projection

* Vertica only supports selected aggregate functions
* SUM, MAX, MIN, COUNT, Top-K
* We support arbitrary functions and their arbitrary combinations

Projection Definition

* Projection is defined by “SELECT ... [GROUP BY] ...", with implicit “FROM <base_table>"

* Suppose we'd like to optimize the following query by pre-aggregation:

SELECT
toStartOfMinute(datetime) AS 0, sum(i), ava(j),
sum(i) / sum(3j), topK(5)(id), quantile(0.99)(score)
FROM base table
GROUP BY _0

* We can simply do

ALTEE TABLE base table ADD PROJECTION p
SELECT
toStartOfMinute(datetime) AS 0, sum(i), ava(j),
sum(i) / sum(j), topK(5)(id), quantile(0.99)(score)
FROM base table
GROUP BY _ 0O
) TYPE aggregate;

Projection DDL

* Newly added DDLs

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]

(
namel [typel] [DEFAULT|MATERIALIZED|ALIAS expr1l] [compression_codec] [TTL expri],
PROJECTION projection _name 1 (SELECT <COLUMN LIST EXPR> [GROUP BY]) TYPE aggregate,

) ENGINE = [*]MergeTree ...

ALTER TABLE [db.]table ADD PROJECTION name (SELECT <COLUMN LIST EXPR> [GROUP BY]) TYPE aggregate;
ALTER TABLE [db.]table DROP PROJECTION name;
ALTER TABLE [db.]table MATERIALIZE PROJECTION name [IN PARTITION partition_name];

ALTER TABLE [db.]table CLEAR PROJECTION name [IN PARTITION partition_name];

Projection Storage

* Projection iIs stored similar to skip indices
* as a subdirectory inside part directory, named by projection name

CREATE TABLE base ('dt’ DateTime, 'col’ int)
ENGINE = MergeTree PARTITION BY toDate(dt) ORDER BY dt;

ALTER TABLE base
ADD PROJECTION prj_ 1
(
SELECT sum(col)
GROUP BY toStartOfFiveMinute(dt)
) TYPE aggregate;

INSERT INTO base VALUES
('2020-10-24 00:00:00', 10),
('2020-10-24 00:00:00', 20),
('2020-10-24 00:00:00', 30);

data/data/default/base/

— 20201024 1.1 0

— checksums. txt

— columns. txt

count.txt

col.bin

col.mrk2

dt.bin

dt.mrk2

minmax_dt.idx
partition.dat
primary.idx

prj_1

— checksums. txt

— columns. txt
count.txt
max%28col%29.bin
max%28col%29.mrk2
primary.idx
toStartOfFiveMinute%28dt%29.bin
toStartOfFiveMinute%28dt%29.mrk2

Query Routing

* |f a query can be deduced by a projection, it will be selected If:
* allow_experimental_projection_optimization = 1
* 50% of the selected parts contain materialized projection
* total selected rows are less than base table

* |f a projection 1s used, it will be listed in TRACE log similar to our
Index analysis
* TODO we need better query explainer

Query Routing (Internals)

* Do projection query analysis up to WithMergeableState

* |gnore all aliases and normalize expression names (especially
case-insensitive functions)

* Replacing expressions with columns which has the same name
* Check If projection provides all needed columns

* Rebuild query pipeline to read from projection parts

* TODO support prewhere, sample, distinct, group by with total,
rollup or cube

* TODO support CNF normalization of projection predicates

Projection Merge

* Projection parts are merged exactly like normal parts

* |f two parts don't have the same projections, they cannot be
merged

* In order to merge, we need explicit projection materialization or
projection clear

Projection Materialization

* Building projections out from huge parts Is expensive
* Different sorting order
* Aggregating over huge amount of data

* Implement as mutation so it will be run in background
* Implement as INSERT SELECT (projection name cannot start with “tmp_")

tmp_mut xxx/ tmp_mut xxx/
I I
--tmp prj a 1 ==> |--prj_a
--tmp prj a 2
--tmp prj a 3
--tmp prj a 4
--tmp prj a 5

I
I
I
I
I
|--tmp prj a 6

Materialization Optimization

* Avoid materializing unneeded columns
* Fast temporary parts removal (kudos to Alexey)

* Multi-run/multi-pass merge
* Squash blocks to a minimum size threshold
* Choose at most 10 parts to merge at a time
* TODO loser tree to optimize merge sort

Projection v.s. Materialized View

Materialized View

Data Consistency No Yes
Schema Consistency No Yes
Query Routing No Yes
Query Index Optimization No Yes
Partial Materialization No Yes (but not recommended)
Complex Queries (Joins) Yes No (May support ARRAY JOIN)

Special Engines Yes No

Experiments

Projection: GROUP BY toStartOfTenMinutes(datetime)

Duration (1 thread) Duration (24 threads)

countlf with filters 28.75 sec 1.56 sec
countlf with filters (projection) 0.03 sec 0.02 sec
unigHLL1?2 14.18 sec 1.79 sec
unigHLL12 (projection) 0.05 sec 0.05 sec
3 aggregate functions 50.29 sec 3.43 sec

3 aggregate functions (projection) 0.04 sec 0.02 sec

Experiments (Space Consumption)

One part

Rows

two dim projection

(223

two dim projection
894M
293M
702M
923M
212M
110M
221M

three dim projection

three dim projection

1.1G
304M
781M

1.1G
238M
120M
260M

base

182779904

base
27G
4.7G
18G
26G
4.9G
2.1G
26G

Experiments (Aggregating States)

AggregateFunction
countlf(col = 0)
count()
avg(col)
sum(num)
unigHLL12(some_id)
unig(some_id)

Size
16 kb
31 kb
51 kb
25 kb
18 mb

396 mb

AggregateFunction
max(cpu_idle)
avg(cpu_idle)

quantile(0.9)(cpu_idle)

quantile(O.

9

9)(cpu_idle)

Size
369 kb
450 kb
20 mb
20 mb

Projection In Production

* Dashboard rendering from 30 seconds to 7 seconds
* Average additional storage consumption is 20%
* Negligible insertion/merge impact

* Bonus Point

* Use alias columns in Distributed table to match different projections with
different granule of aggregation

Projection TBD

* Design and implement other types of projections
* normal type: different ordering
* secondary index: storing ScanRange directly

* ProjectionMergeTree
* store projection without base table

* Support column encoding schemes
* Contribute

oz 3 RN M

Background: QOur ClickHouse service

. Proxy Query W,
. <«—>
Serwce Service My
Grafana I

¢ M|II|ons of queries

per day
Monl_tor <—> Cluster 1 Cluster 2 ... | Cluster N <—> Admin
Service E i :
5 Service
_____________________________ Around thousands of machines
1 ETL Service
"' OPEN Tens of petabytes

@ & kafka.

~=HIVE

Background: QOur ClickHouse service

Proxy Query \ \
ﬁ é> @ ‘Service\ My

ETL Service manages mainly two kinds of data I

i

Grafana

}

Monitor
Service

|
tars OPEN
| |

loading processes:

1. HiveQL + MapReduce to load data from
hive periodically (pre-generated parts)

2. Flink job to consume data from kafka and

directly insert into ClickHouse
L

ETL Service

R S Kafka.

~=HIVE

| Admin
Service

Tens of petabytes

Flink ETL Job

Kafka

YARN Container

App Master

Joh Manager

Jackson JSON Parser |=———

:

.

Kafka Source

Flink Data Operators —»

ClickHouse IDBC

PreparedStatement

Y

YARN Container

Task Manager

~
S
™~

YARN Container- R

Task Manager

YARN Container

Task Manager

ClickHouse

ClickHouse Cluster

Main problems of Flink

* Flink/Yarn scheduling is less flexible than k8s

e Java Is slow In

* Consuming from Kafka (kudos to librdkafka)
* Parsing JSON (kudos SIMDJSON)
* Inserting into ClickHouse

* Flink data transtormation i1s cumbersome to use
* Java wastes memory (OOM when dealing huge messages)
* The pipeline lacks introspection capabillities

ClickHouse-ETL

* Motivations (Our needs for real-time data ingestion)
* Fast data input from Kafka
* Ease of management
* Reliable
* Extensible

* An attempt of using ClickHouse as a tool to solve real problems

Introduce ClickHouse-ETL

kafka
ClickHouse-ETL ClickHouse-ETL
Y A 4
KafkaEngine KafkaEngine
Y l
Distributed Distributed
table table Kubenetes Pod
A
Distributed
table
L 4 : J
CH1 «—» (H1 CH2

replica

ClickHouse-ETL Pod

Kafka

ClickHouse-ETL

KafkaEngine————»

ClickHouse
Instance

———Materialized Vv

r N

h 4

eport Metrics

Pod
Driver

-—Get Distributed Table

Kube netes Pod

iew—

ClickHouse

ClickHouse Cluster

Buillding Blocks

* Combine JSONExtract with untuple to inference schema on the fly

* Enhance StorageKafka and StorageDistributed to handle errors In
better ways

* Utilize joinGet/Storageloin with overwrite to update schema on the fly

* Take column transformers as the building blocks of ETL transformation
grammar

* ETL pipeline i1s driven by MaterializedView (one per thread)

ETL Pipeline

-- Require one record per message

CREATE TABLE {database}.{table} kafka {idx} (line String) ENGIME Kafka SETTINGS kafka format = 'BufferAsString', ...

CREATE MATERIALIZED VIEW {database}.{table} mv {idx} TO {database}.{table}
AS SELECT * {custom transformation_str} FROM
(SELECT * FROM

WITH JSOMExtractWithErrors(line, joinGet('default.schema', 'walue', 1)) AS t
SELECT t.1 _json_parsing errors, untuple(t.2, joinGet('default.schema', 'value', 2})

FROM {database}.{table} kafka {idx}

{custom filter cond})

* JSONExtractWithErrors: attach two columns to record parsing errors
 default.schema: store the table schema and its JSON mappings
* untuple: unwrap Tuple result based on nested schema

Fxtended Table Schema

CREATE TABLE mytable

(
id Nullable(UInt64), -- Nullable types will be inherited
timestamp Int64, -- Millisecond timestamp
datetime DateTime DEFAULT toDateTime(timestamp / 1000) COMMENT 'SS', -- Ignore parsing datetime
json_int Int32 COMMENT 'S.json.int', -- Numeric types will be promoted.
json_str String COMMENT 'S.json.str',
json_float Floate4 COMMENT 'S.json.float',
json String COMMENT 'S. S$json’', -- Store the json value as string
int_val Int32 COMMENT '%.int_val', -- Parse int val from string
) int_val2 Int32 COMMENT '%%' -- Parse int val2 from string (JSON key is the same)

ENGINE = Distributed(mycluster, mydb, mytable local, xxHash32(id));

SHOW SCHEMA mytable

Row 1:

schema: “id’ Nullable(UInt64), “timestamp’ Int64, 'int val2® String, "int_val® String,
"$json” String, “json’ Tuple(float® Floaté4, "str’ String, "int Inté64)

mapping: json.int AS json_int, json.str AS json_str, json.float AS json_float,
"$json” AS json, int_val AS int_val

ClickHouse-ETL Manager

RESTful CRUD

0

ClickHouse-ETL Manager

ClickHouse

Kubenetes Pod /

f

i

/

/

ClickHouse-ETL

ClickHouse

Kube netes Pod

AHDUSE—ETL

ClickHouse

Kubenetes Pod

~

C|iCkHDUSE}\

Kubenetes Pod

ClickHouse

INntrospection

* ClickHouse-ETL manager maintains a cluster “clickhouse_etl” of
all Pods and keeps it update to date (1 minute)

SELECT * FROM cluster(clickhouse etl, default.info) -- ETL Pod info
SELECT * FROM cluster(clickhouse etl, system.etl events) -- ETL metrics: drops, errors, etl
SELECT * FROM cluster(clickhouse etl, system.kafka info) -- Kafka metrics: lags, errors, etl

e Useful iInformation is recorded In tables

Advantages

* ETL schema Is recorded along with the table schema

* Writing to local Distributed table automatically honors the hashing key

Schema changes are applied automatically

Pods are stateless, easy to scale

Fast, reliable, flexible, understandable

Based on ClickHouse

Experiments

* Minimum cores to catch up with the data source

Blocks per minute ClickHouse-ETL

11.2M 800 cores 160 cores
30.2M 579 600 cores 100 cores
23.1M 50 60 cores 6 cores

Flink usually requires 1 core 4 GB mem
while ClickHouse-ETL uses 1 core 3 GB

ClickHouse-ETL TBD

* Exactly once semantic
* Partition adjustment
* Bulkloading with high availability

Balance big parts among JBOD disks

* Define “Big Parts”
* min_bytes_to_rebalance_partition_over_jbod

* Balance Big Parts in Partition Granule
* Record current snapshot with emerging/submerging parts
* Choose the best candidate(s) to land new big parts

Unbalanced partition Balanced partition
'2021-01-28' '2021-02-02'
—disk_name——sz —disk_name——sz

disk1 78.02 GiB disk1 32.45 GiB
disk10 30.71 GiB disk10 42.52 G1B
disk11 30.32 G1B disk11 31.12 GiB
disk2 19.12 GiB disk2 38.54 GiB
disk3 29.40 GiB disk3 41.92 GiB
disk4 105.84 GiB disk4 30.83 GiB
disk5 68.80 G1B disk5 38.83 GiB
diskeé 19.52 GiB diskeé 43.63 G1iB
disk7 16.10 GiB disk7 43.59 GiB
disk8 24.08 GiB disk8 38.85 GiB
disk9 18.61 GiB disk9 43.94 GiB

Flasticsearch Storage Engine

* Based on ReadWriteBufferFromHTTP and SIMD]JSON
* Push down primitive predicates

* esquery function
* AST-level rewrite inside IStorage::read()
* semantically equals to “not ignore”

Design of partition key/primary key

* Partition should be treated as the unit of data management

Partitioning is not to speed up selects - the main rule.
-- From Alexey Milovidov

* Primary keys should be ordered by usage rate

* Better to have keys with low cardinality come first in primary keys

Design of partition key/primary key

SELECT toStartOfMinute(datetime) _0,
AVG(kbytes * 8 / duration) _1
FROM mytable
WHERE datetime >= '2021-01-06 06:00:00'
AND datetime <= '2021-01-06 08:59:59'
AND stream_id IN ('xxxxxxxx')
GROUP BY _0 settings max_threads = 1

Primary Key(s) query (code) query (hot)

datetime 256236 marks 152.877 sec 60.121
(datetime , stream id) 21599 marks 34.249 sec 5.118
(toStartOfTenMinutes(datetime), stream _id) 125 marks 0.173 sec 0.042

Query Log Analysis

* Useful qguery information analysis
* normalized_query, query_kind, databases, tables, columns

WITH quantiles(®, 0.5, 0.9, 0.99, 1)(query duration ms / 1000) AS t

SELECT
min(query_start time) AS s, max(query start time) AS e,
normalizeQueryKeepNames(query) AS q, any(query) AS rq, count() AS cnt,
countIf(exception != '') AS cnt_e, anyIf(exception, exception != '') AS e,
t[1] AS t_min, t[2] AS t_p50, t[3] AS t_p90, t[4] AS t p99, t[5] AS t_max

FROM

(
SELECT
query, exception, query duration_ms, query start time
FROM cluster(query_entrypoint, system.query_log)
WHERE (query kind = 'Select') AND (NOT has(databases, 'system')) AND is_1initial_query
)

GROUP BY gq ORDER BY cnt

* \What If we don’t have the newer version ClickHouse?

* Setup a local instance with all databases/tables, using engine Memory
* Replay the queries (attaching event_time, duration as comment)

Clickhouse Client [Hidden| Features

* Open Editor (Alt-Shift-E)

* Bracket Pasting (-n without —m)
* No need to provide semicolons
* Better pasting experience

* Query Parameter with identifiers
* Customize Query ID Format

Miscellaneous features

* MergeTree-level settings
* max_partitions_to_read
* max_concurrent_queries/min_marks_to_honor_max_concurrent_queries

* Query Proxy Service
* Global query quota and concurrency control

* Monitor On Cluster Hanging Issues
* MaxDDLEntryID tracks the progress of on cluster DDLs
* Check if any instance has fixed MaxDDLEntryID for a period of time while others don’t

Near future In kuaishou

* Extend and Explore Projections
* Contribute to community
* without fact table/as secondary indices/more storage scheme

* ClickHouse-ETL Exactly Once Semantic
* Subpartition

* Enhance Distributed Query Processing

(QJA

Thank You!

