
ClickHouse Projections, ETL and more

郑天祺 博士, Amos Bird (Ph.D)，zhengtianqi@kuaishou.com

About me

• Active ClickHouse Contributor
• ~300 valid PRs
• ~40 Stack Overflow Answers
• Doing some code reviews occasionally
• Helping new ClickHouse developers

• Graduated from ICT CAS with a Ph.D degree in database

• Currently @kuaishou Data Platform Department

https://github.com/amosbird

Outline

• Projections (MaterializedView in part-level)

• ClickHouse-ETL (Design new systems based on ClickHouse)

• Other Improvements

• Looking into the future

Projections

The Name of “Projection”

• Originated from Vertica (Don’t confuse it with SQL Projection Op)
• Projections are collections of table columns,
• Projections store data in a format that optimizes query execution

• Our projection v.s Vertica
• MergeTree* table == Vertica’s super projection
• Vertica only supports selected aggregate functions

• SUM, MAX, MIN, COUNT, Top-K

• We support arbitrary functions and their arbitrary combinations

Projection Definition

• Projection is defined by “SELECT ... [GROUP BY] ...”, with implicit “FROM <base_table>”

• Suppose we'd like to optimize the following query by pre-aggregation:

• We can simply do

Projection DDL

• Newly added DDLs

Projection Storage

• Projection is stored similar to skip indices
• as a subdirectory inside part directory, named by projection name

Query Routing

• If a query can be deduced by a projection, it will be selected if:
• allow_experimental_projection_optimization = 1
• 50% of the selected parts contain materialized projection
• total selected rows are less than base table

• If a projection is used, it will be listed in TRACE log similar to our
index analysis
• TODO we need better query explainer

Query Routing (Internals)

• Do projection query analysis up to WithMergeableState

• Ignore all aliases and normalize expression names (especially
case-insensitive functions)

• Replacing expressions with columns which has the same name

• Check if projection provides all needed columns

• Rebuild query pipeline to read from projection parts

• TODO support prewhere, sample, distinct, group by with total,
rollup or cube

• TODO support CNF normalization of projection predicates

Projection Merge

• Projection parts are merged exactly like normal parts

• If two parts don’t have the same projections, they cannot be
merged

• In order to merge, we need explicit projection materialization or
projection clear

Projection Materialization

• Building projections out from huge parts is expensive
• Different sorting order

• Aggregating over huge amount of data

• Implement as mutation so it will be run in background

• Implement as INSERT SELECT (projection name cannot start with “tmp_”)

Materialization Optimization

• Avoid materializing unneeded columns

• Fast temporary parts removal (kudos to Alexey)

• Multi-run/multi-pass merge
• Squash blocks to a minimum size threshold
• Choose at most 10 parts to merge at a time
• TODO loser tree to optimize merge sort

Projection v.s. Materialized View

Feature Materialized View Projection

Data Consistency No Yes

Schema Consistency No Yes

Query Routing No Yes

Query Index Optimization No Yes

Partial Materialization No Yes (but not recommended)

Complex Queries (Joins) Yes No (May support ARRAY JOIN)

Special Engines Yes No

Experiments

Query Duration (1 thread) Duration (24 threads)

countIf with filters 28.75 sec 1.56 sec

countIf with filters (projection) 0.03 sec 0.02 sec

uniqHLL12 14.18 sec 1.79 sec

uniqHLL12 (projection) 0.05 sec 0.05 sec

3 aggregate functions 50.29 sec 3.43 sec

3 aggregate functions (projection) 0.04 sec 0.02 sec

Projection: GROUP BY toStartOfTenMinutes(datetime)

Experiments (Space Consumption)

two dim projection three dim projection base

894M 1.1G 27G

293M 304M 4.7G

702M 781M 18G

923M 1.1G 26G

212M 238M 4.9G

110M 120M 2.1G

221M 260M 26G

two dim projection three dim projection base

7223 20738 182779904Rows

One part

`

Experiments (Aggregating States)

AggregateFunction Size

countIf(col = 0) 16 kb

count() 31 kb

avg(col) 51 kb

sum(num) 25 kb

uniqHLL12(some_id) 18 mb

uniq(some_id) 396 mb

AggregateFunction Size

max(cpu_idle) 369 kb

avg(cpu_idle) 450 kb

quantile(0.9)(cpu_idle) 20 mb

quantile(0.99)(cpu_idle) 20 mb

Projection in Production

• Dashboard rendering from 30 seconds to 2 seconds

• Average additional storage consumption is 20%

• Negligible insertion/merge impact

• Bonus Point
• Use alias columns in Distributed table to match different projections with

different granule of aggregation

Projection TBD

• Design and implement other types of projections
• normal type: different ordering
• secondary index: storing ScanRange directly

• ProjectionMergeTree
• store projection without base table

• Support column encoding schemes

• Contribute

ClickHouse-ETL

Background: Our ClickHouse service

Proxy

Service

Cluster 1 Cluster 2 Cluster N Admin

Service

Query

Service

Monitor

Service

ETL Service

Tens of petabytes

Millions of queries
per day

Around thousands of machines

Tens of petabytes

Background: Our ClickHouse service

Proxy

Service

Cluster 1 Cluster 2 Cluster N Admin

Service

Query

Service

Monitor

Service

ETL Service

ETL Service manages mainly two kinds of data
loading processes:

1. HiveQL + MapReduce to load data from
hive periodically (pre-generated parts)

2. Flink job to consume data from kafka and
directly insert into ClickHouse

Flink ETL Job

Main problems of Flink

• Flink/Yarn scheduling is less flexible than k8s

• Java is slow in
• Consuming from Kafka (kudos to librdkafka)
• Parsing JSON (kudos SIMDJSON)
• Inserting into ClickHouse

• Flink data transformation is cumbersome to use

• Java wastes memory (OOM when dealing huge messages)

• The pipeline lacks introspection capabilities

ClickHouse-ETL

• Motivations (Our needs for real-time data ingestion)
• Fast data input from Kafka
• Ease of management
• Reliable
• Extensible

• An attempt of using ClickHouse as a tool to solve real problems

Introduce ClickHouse-ETL

ClickHouse-ETL Pod

Building Blocks

• Combine JSONExtract with untuple to inference schema on the fly

• Enhance StorageKafka and StorageDistributed to handle errors in
better ways

• Utilize joinGet/StorageJoin with overwrite to update schema on the fly

• Take column transformers as the building blocks of ETL transformation
grammar

• ETL pipeline is driven by MaterializedView (one per thread)

ETL Pipeline

• JSONExtractWithErrors: attach two columns to record parsing errors
• default.schema: store the table schema and its JSON mappings
• untuple: unwrap Tuple result based on nested schema

Extended Table Schema

ClickHouse-ETL Manager

Introspection

• ClickHouse-ETL manager maintains a cluster “clickhouse_etl” of
all Pods and keeps it update to date (1 minute)

• Useful information is recorded in tables

Advantages

• ETL schema is recorded along with the table schema

• Writing to local Distributed table automatically honors the hashing key

• Schema changes are applied automatically

• Pods are stateless, easy to scale

• Fast, reliable, flexible, understandable

• Based on ClickHouse

Experiments

Rows per minute Blocks per minute Flink ClickHouse-ETL

11.2M 739 800 cores 160 cores

30.2M 579 600 cores 100 cores

23.1M 50 60 cores 6 cores

• Minimum cores to catch up with the data source

Flink usually requires 1 core 4 GB mem
while ClickHouse-ETL uses 1 core 3 GB

ClickHouse-ETL TBD

• Exactly once semantic

• Partition adjustment

• Bulkloading with high availability

Other Improvements

Balance big parts among JBOD disks

• Define “Big Parts”
• min_bytes_to_rebalance_partition_over_jbod

• Balance Big Parts in Partition Granule
• Record current snapshot with emerging/submerging parts
• Choose the best candidate(s) to land new big parts

Elasticsearch Storage Engine

• Based on ReadWriteBufferFromHTTP and SIMDJSON

• Push down primitive predicates

• esquery function
• AST-level rewrite inside IStorage::read()
• semantically equals to “not ignore”

Design of partition key/primary key

• Partition should be treated as the unit of data management

• Primary keys should be ordered by usage rate

• Better to have keys with low cardinality come first in primary keys

Partitioning is not to speed up selects - the main rule.

-- From Alexey Milovidov

Design of partition key/primary key

Primary Key(s) mark number query (code) query (hot)

datetime 256236 marks 152.877 sec 60.121

(datetime , stream_id) 21599 marks 34.249 sec 5.118

(toStartOfTenMinutes(datetime), stream_id) 125 marks 0.173 sec 0.042

Query Log Analysis

• Useful query information analysis
• normalized_query, query_kind, databases, tables, columns

• What if we don’t have the newer version ClickHouse?
• Setup a local instance with all databases/tables, using engine Memory
• Replay the queries (attaching event_time, duration as comment)

Clickhouse Client [Hidden] Features

• Open Editor (Alt-Shift-E)

• Bracket Pasting (-n without –m)
• No need to provide semicolons
• Better pasting experience

• Query Parameter with identifiers

• Customize Query ID Format

Miscellaneous features

• MergeTree-level settings
• max_partitions_to_read

• max_concurrent_queries/min_marks_to_honor_max_concurrent_queries

• Query Proxy Service
• Global query quota and concurrency control

• Monitor On Cluster Hanging Issues
• MaxDDLEntryID tracks the progress of on cluster DDLs

• Check if any instance has fixed MaxDDLEntryID for a period of time while others don’t

Near future in kuaishou

• Extend and Explore Projections
• Contribute to community
• without fact table/as secondary indices/more storage scheme

• ClickHouse-ETL Exactly Once Semantic

• Subpartition

• Enhance Distributed Query Processing

Thank You!

