
Pavel Kovalenko, Senior Software Engineer, Yandex.Cloud

ClickHouse over Object Storage

ClickHouse MergeTree

▎Important storage internal details

› All data divided into chunks named as “parts”

› Each part contains column data in multiple or one (compact form) files

› Parts are immutable, written once, most files are not modified

› Merges and mutations spawn new parts (MVCC)

› CH is designed to have continuous read/write I/O profile (no random
access)

› CH is designed to read only a subset of column data (select * is bad
practice)

2

ClickHouse cluster

▎Usability issues

› Data is tightly coupled with hosts/shards

› Storage and execution engine is the same thing (works only with POSIX FS)

› Data is limited by local disks capacity

› Scaling is not easy operation

› You can’t just redeploy a node in case of disk failure

› Need to have expertise to maintain stateful deployment*

3
* Databases and Kubernetes (RU): https://www.youtube.com/watch?v=BnegHj53pW4

https://www.youtube.com/watch?v=BnegHj53pW4

ClickHouse cluster

▎How to improve

› Decouple execution engine from storage (virtual file system)

› Store parts data into a elastic object storage with high availability and strong
durability guarantees (S3, HDFS)

› Store metadata (file/directory hierarchy, names, sizes, permissions) into a
transactional KV store or RDB (PostgreSQL, Zookeeper, YDB)

› Local disks are used for caching and storing temporary data

4

ClickHouse over Object Storage

▎Benefits

› Unlimited capacity

› Data integrity moved to object storage responsibility

› Disk space can be used more efficiently (hot data in disk cache, cold data in
object storage)

› No need to have replicas only for HA

› No need to manually transfer data between replicas

› Node can be quickly redeployed from scratch

› Open doors to elasticity and auto-scaling
5

Virtual File System

01

Virtual File System

▎How?

› Virtualize all I/O operations with files (file read/write/remove, directory
create/iterate, renaming, seeks, hardlinks)

› Disk as abstraction layer

› Integration with existing storage policies

› Compatibility with current behavior (DiskLocal)

› Possibility to various implementations: S3, HDFS, Memory, etc

› Work is already done for MergeTree and *Log engines

7

S3 Object Storage

▎Why?

› Yandex has own S3-compatible Object Storage

› A lot of other cloud implementations AWS, GCP, Azure

› A relatively simple API

› Support range queries (seeks)

› C++ integration out of the box (AWS SDK)

8

Disk S3

▎How it’s implemented now?

› Metadata storage is local FS yet

› FS layout is preserved. Part’s files hierarchy and naming are same as in
local disk storage but files contain only metadata

› Real data is saved to S3 object with random name

› Metadata files contain a list of S3 object names, size of all S3 objects and
references count (hardlinks)

› Returns R/W BufferFromFileBase to transparent read/write as to regular
files (with append & seek support).

› Append is needed only for Log engines
9

Disk S3

▎Metadata file layout

Similar layout can be represented in KV / RDB metadata storage

10

1 # Metadata file version
3 1044 # Number of objects, Total size of objects
44 data/grlj...zcv
868 data/nvjb...ffk # Object size, Object S3 path
132 data/asit...fet
1 # References count

Disk S3

▎How to use?

11

<yandex>
 <storage_configuration>
 <disks>
 <s3>
 <type>s3</type>
 <endpoint>https://s3.yandexcloud.net/jokserfn/data/</endpoint>
 <access_key_id>***</access_key_id>
 <secret_access_key>***</secret_access_key>
 </s3>
 </disks>
 <policies>
 <s3>
 <volumes>
 <main>
 <disk>s3</disk>
 </main>
 </volumes>
 </s3>
 </policies>
 </storage_configuration>
</yandex>

Disk S3

▎How to use?

12

CREATE TABLE my_table (
dt DateTime,
id Int64,
data String

) ENGINE=MergeTree()
PARTITION BY dt
ORDER BY (dt, id)
SETTINGS storage_policy='s3'

Disk S3

▎How to use?

13

<yandex>
 <storage_configuration>
 <disks>
 <s3>
 <type>s3</type>
 <endpoint>https://s3.yandexcloud.net/jokserfn/data/</endpoint>
 <access_key_id>***</access_key_id>
 <secret_access_key>***</secret_access_key>
 </s3>

<ssd>
 <type>local</type>
 <path>/data/</path>

</ssd>
 </disks>
 <policies>
 <s3_cold>
 <volumes>
 <main>
 <disk>ssd</disk>
 </main>
 <external>
 <disk>s3</disk>
 </external>
 </volumes>
 </s3_cold>
 </policies>
 </storage_configuration>
</yandex>

Disk S3

▎How to use?

14

CREATE TABLE my_table (
dt DateTime,
id Int64,
data String

) ENGINE=MergeTree()
PARTITION BY dt
ORDER BY (dt, id)
TTL dt + INTERVAL 1 MONTH TO DISK 's3‘
SETTINGS storage_policy='s3_cold'

Performance benchmark

02

CH over S3 benchmark

▎Preparation

› Yandex has S3-compatible Object Storage in cloud

› One CH instance (4 CPU, 16 Gb RAM)

› Benchmark against network-hdd (2Tb), linear read throughput ~ 94 MB/sec

› S3 per one connection read/write throughput ~ 55 MB/sec

› Benchmark data is small part of Yandex.Metrica (used in stateful tests)

› Hits (133 columns, 7.3 Gb)

› Visits (181 columns, 2.5 Gb)

16

CH over S3 benchmark

▎Insert benchmark

› Part compact form is used to have less files (setting min_bytes_for_wide_part)

▎Select benchmark

› OPTIMIZE FINAL is performed on all tables before run selects

› Page cache is dropped before each query execution

› Query performed several times, best result is used

time (cat hits_v1.tsv | clickhouse-client --query "INSERT INTO hits_v1 FORMAT TSV")

time (cat visits_v1.tsv | clickhouse-client --query "INSERT INTO visits_v1 FORMAT TSV")

17

CH over S3 benchmark

Hits 7.3 Gb (3%) Visits 2.5 Gb (3%)
0

100

200

300

400

500

600

483

152

467

148

Insert benchmark

S3 HDD

Table size (PERcentage difference)

In
se

rt
io

n
 ti

m
e

 (
S

E
C

O
N

D
S

)
L

E
S

S
 IS

 B
E

T
T

E
R

18

CH over S3 benchmark

19

▎Select queries

SELECT
 SearchEngineID AS k1,
 AdvEngineID AS k2, count() AS c
FROM local.hits_v1
GROUP BY k1, k2
ORDER BY c DESC, k1, k2
LIMIT 10

SELECT EventDate, count() AS hits, any(visits)
FROM local.hits_v1 ANY LEFT JOIN
(
 SELECT
 StartDate AS EventDate,
 sum(Sign) AS visits
 FROM local.visits_v1
 GROUP BY EventDate
) USING EventDate
GROUP BY EventDate
ORDER BY hits DESC
LIMIT 10

SELECT
 StartDate,
 TraficSourceID IN (0) ? 'type_in' : 'other' AS traf_type,
 sum(Sign)
FROM local.visits_v1
WHERE CounterID = 842440
GROUP BY StartDate, traf_type ORDER BY StartDate, traf_type

SELECT CounterID, count() AS c
FROM local.hits_v1
GROUP BY CounterID
ORDER BY c DESC
LIMIT 10

SELECT count()
FROM local.hits_v1
WHERE AdvEngineID != 0

#1

#2

#3

#4

#5

CH over S3 benchmark

#1 (26%) #2 (58%) #3 (118%) #4 (33%) #5 (85%)
0

0.5

1

1.5

2

2.5

3

2.1

2.64

0.67

0.47

0.24

1.62

1.44

0.17

0.33

0.1

Select benchmark

S3 HDD

Query number (PeRcentage difference)

Q
u

e
ry

 T
im

e
, (

se
co

n
d

s)
 L

E
S

S
 IS

 B
E

T
T

E
R

20

CH over S3 benchmark

▎Results and discovered issues

› Overall drop without any optimizations is 20-120%

› S3 has high latency 100-200ms even on small requests

› S3 insertion/selection times linearly depended on the number of files

› Page cache is not working for S3. Marks cache improves latency.

› Seek works not optimally (download all file with specified range instead of
chunks)

› Best I/O scenario for S3 is consecutive scan of large files

› Caching and writing files to S3 in parallel should really help
21

Future plans

03

Future plans

▎Shared metadata storage

› Transactional engine to perform consistent changes in data parts

› First write to object storage then commit metadata

› GC objects in case of failures

› Reference counters for hard links implementation and sharing parts
between replicas

› PostgreSQL or Zookeeper as choice

23

Future plans

▎Disk caching

› Store parts content on local disks for better latency

› Mark and index files should be cached first

› Strong consistency (client receives ack if part is uploaded to object storage)

› Eventual consistency (first write to cache then asynchronously replicate to
object storage)

› Read-ahead caching (load some files to cache in background ahead of
time)

24

Future plans

▎Virtual sharding

› Divide all data onto logical partitions (range or key based)

› Distribute ownership of partitions across nodes (consistent / rendezvous
hashing)

› During cluster changes re-distribute ownership between nodes

› No data shuffling is needed (all data is already in object storage)

› Possibility to scale on-the-fly if load is too heavy

› Get rid of Distributed/Replicated tables

25

What about other databases?

04

ClickHouse rivals

 Druid & Pinot

› “Deep storage” concept

› Data backup and transferring between cluster nodes

› Prefetch only (Druid), VFS layer + Disk caching (Pinot)

› Data storage engines: S3, HDFS, Azure, GCP

› Metadata storage engines: PostgreSQL, MySQL, Zookeeper

27

ClickHouse rivals

Impala

› Stateless execution engine

› Main data storage is HDFS (support S3 as well)

› HDFS caching for acceleration (keeping HDFS blocks in memory on data
nodes)

› Metadata storage engines: PostgreSQL and MySQL

Kudu

› No HDFS or S3 integration. Storage oriented system

› Tight integration with Impala 28

ClickHouse rivals

Snowflake

› SaaS solution

› Data storage is S3

› Query execution is decoupled with storage (virtual warehouse)

› Using disk caching

› Metadata in transactional K/V

29
Design document: http://pages.cs.wisc.edu/~remzi/Classes/739/Spring2004/Papers/p215-dageville-snowflake.pdf

http://pages.cs.wisc.edu/~remzi/Classes/739/Spring2004/Papers/p215-dageville-snowflake.pdf

Conclusions

05

ClickHouse over Object Storage

▎Conclusions

› Acceptable performance even without any optimizations

› More efficient work with S3 can improve throughput

› Disk caching can significantly improve latency

› Many databases already use S3 as main storage, it’s time for ClickHouse to
catch up

› S3 is not only option. HDFS, GCP, Azure can be used as well

› Reduces costs of maintenance

› Elastic deployment
31

Q&A

Thank you!

Pavel Kovalenko

Senior Software Engineer, Yandex.Cloud

jokserfn@gmail.com

@jokserfn

	Slide 1
	ClickHouse MergeTree
	ClickHouse cluster
	ClickHouse cluster
	ClickHouse over Object Storage
	Slide 6
	Virtual File System
	S3 Object Storage
	Disk S3
	Disk S3
	Disk S3
	Disk S3
	Disk S3
	Disk S3
	Slide 15
	CH over S3 benchmark
	CH over S3 benchmark
	CH over S3 benchmark
	CH over S3 benchmark
	CH over S3 benchmark
	CH over S3 benchmark
	Slide 22
	Future plans
	Future plans
	Future plans
	Slide 26
	ClickHouse rivals
	ClickHouse rivals
	ClickHouse rivals
	Slide 30
	ClickHouse over Object Storage
	Slide 32
	Thank you!

