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Mission and Goals of 
Logging



Vision of Reliability Platform

Uber engineers have the platforms, tools, and 
support to rapidly develop and confidently 
operate their services reliably at scale



Logging Mission

● Make it work: Maximize the speed at which engineers can 
act upon operational data

● Make it scale: Scale to meet today’s needs and tomorrow’s 
growth

● Make it cheap: Ensure a consistent and sustainable cost 
model



Background and 
Challenges



High-Level Architecture



● We collect a lot of things

○ Thousands of Services emitting hundreds TB logs per day

● We store a lot of things

○ Low Petabytes of logs stored

● We query them for real-time debugging, offline troubleshooting, analytics, etc.

○ hundreds queries / s from dashboards and API queries

Current Scale of Logging



Challenge: Developer Productivity

● Logging users want schema-free logging

○ Services can write logs with very different structures

○ Log schema evolves over time (new fields, changing field types, etc.)

● ElasticSearch requires a consistent schema per index

● Type conflicts: log field type inconsistency => ElasticSearch exceptions

○ Disable field, drop logs

○ Can significantly degrade ES performance and affect co-tenants in cluster

○ Requires back-and-forth between logging team and service owner to fix



Challenge: Performance

● Performance challenges

○ End-to-end ingestion latency

■ >2 minute latency for large indices

■ ES indexes data in batches, reducing batch time can result in significant 

performance degradation due to higher indexing overhead

○ Query latency

■ Poor resource isolation, expensive queries can significantly degrade cluster 

performance, and sometimes render cluster unresponsive even after query 

stops.



Challenge: Scalability and Operability

● High cost makes it expensive to scale

● Operational challenges at scale

○ Running multiple ES clusters 

■ Having too many nodes in one cluster puts strain on the master node

○ General reliability issues

■ JVM heap lockup after a single expensive query requires bouncing the entire 

cluster



ClickHouse Evaluation



Evaluation Setup

● Ingested production logs from Kafka into candidate storage cluster under evaluation 

● Continuously evaluating common types of production queries against candidate storage 

cluster:

○ Group by query: "For time range X and services Y, give me the top 5 most frequently 

accessed endpoints matching filter Z" 

○ Histogram query: "For time range X and services Y, give me the number of log events 

per minute matching filter Z"

○ Raw query: "For time range X and services Y, give me the most recent 500 logs 

matching filter Z ordered by time"



Key Observations about Logging Use Cases

● Observations:

○ Schema-free logging is highly desirable

○ Number of logs queried << number of logs ingested

○ Number of log fields accessed << number of log fields stored 

○ Indexing on all fields incurs significant performance overhead

● A columnar storage that 

○ Provides mechanisms to support schema-free logging for developer productivity

○ Indexes on only the necessary fields but no more

■ Performance for querying indexed fields

■ Efficiency for not indexing all fields



What's ClickHouse?

● An open-source, distributed, high performance columnar DBMS

● High throughput ingestion with asynchronous segment merging, requires no locks during 

concurrent writes

● High performance parallelized query execution

● Supports a query language covering majority of SQL capabilities (GROUP BY, ORDER BY, 

JOIN, etc.)

● Built-in clustering mechanism supports configurable sharding, multi-master shard-level 

writing and replication, and distributed query processing



"Why Clickhouse: Ingestion"

● Writes 3x - 4x throughput compared to ES

● Ingest performance scales close to linearly to cluster size

○ Writes evenly distributed across the cluster results in even load distribution

○ Independent shard design maximizes single-node performance as cluster size 

increases

○ Multi-master replication ensures no SPOF in design



"Why Clickhouse: Query"
● Data scanning speed during query processing

○ ~5x query speed of ES

○ Vectorized execution and parallelized processing across cores achieves high 

scanning speed

● Expected to support high hundreds in QPS 

● Better control on resource allocation

● Increases in query concurrency beyond max levels does not cause cluster instability

○ OTOH, ES may experience cluster-wide lockup due to high query load even after 

query is cancelled / timeout



"Why Clickhouse: Storage"
● Configurable column-level compression algorithm

○ LZ4, ZSTD, …

○ Allows more efficient storage, faster disk I/O, and bigger raw dataset to fit in filesystem 

cache

● Compression ratios

○ LZ4: 3x for logs with complex schema, 20x for small, structured logs

○ ZSTD: 2x - 3x better compression ratio than LZ4 at 15% higher CPU cost

● Data are partitioned by configurable partition keys allowing pruning large amount of data 

partitions during query execution.

● Supports dynamically building and asynchronously backfilling materialized columns and 

data skipping indices, further speeding up log field queries



ClickHouse Based 
Logging Architecture



High-Level System Architecture



Ingestion

● Consumes log events from Kafka, and flatten JSON logs into structured fields.

○ Honor field types: foo.String vs foo.Number

● Buffers log events into big batches, and routes them to the proper ClickHouse tables. 

● No need to sanitize logs to prevent type conflicts



Dynamic Indexing

● By default, ingest everything, index nothing.

○ Basic query performance with base table schema with native ClickHouse functions

○ < 5% of log fields are ever accessed, don't pay the price for indexing the other 95%

○ No blind indexing == High ingestion throughput

● Indexing is still important and necessary for the 5% to ensure low query latency.

○ Much less data scanned at query time

○ Taking full advantage of columnar storage and vectorized processing.

● Dynamic indexing

○ Adaptive to query patterns: Index log fields that are frequently queried.



Materialized Columns

● Materialized columns derive their values from base columns

● Can be created or dropped at runtime

○ ALTER TABLE <table_name> ADD COLUMN "endpoint.String" ... 

● When a materialized column is created
○ Automatically populated for new incoming rows

○ Asynchronously backfill from historical values during data merging

○ Querying such column will automatically "do the right thing"

● Scanning speed for materialized columns

○ >10x faster than scanning base schema



Data Skipping Indices

● Types of data skipping indices

○ Token-based and n-gram based bloom filter indices: equals, in, ...

○ MinMax indices

○ Set-based indices

● Using the right indices can significantly speed up queries

○ Token-based bloom filter index for UUID matches

○ 15x query latency reduction compared to when no index is used



On-Demand Indexing
● Adaptive to query pattern and user input on the fly

○ Feedback loop in minutes

○ New incoming data are immediately indexed

○ Asynchronously backfilling indices for historical data during segment merging, can be 

accelerated if needed



Query
● Parses incoming query and translates it into a SQL expression understood by ClickHouse

○ Uses schema to determine available fields and their types

■ Conflict resolution when a field has multiple types

○ Favors materialized columns, fall back to base schema scans if unavailable

○ ClickHouse makes use of data skipping indices transparently if available



Query (Cont’d)
● Configurable query execution

○ Resource allocation per query

○ Workload isolation

○ Cost accounting

● Linearly scalable with more resources

○ Able to provide better performance for high priority queries by allocating more 

resources

● Fine-grained control for distributed query processing

○ Skip shards with errors 

○ Timeout slow shards early

○ Strategy to pick from replicas in a shard



Clustering
● Fundamental clustering functions out of the box

● Uniform shard distribution, rack-aware shard topology

● Writes evenly distributed across nodes ensuring balanced ingestion load cluster wide

● "Distributed table" primitive enables distributed queries across shards and merging results 

happen transparently

● Efficient, multi-master replication ensuring little to no write throughput degradation with 

replication enabled



Clustering: Ingestion
● Writes evenly routed to any node in the cluster

● Data replicated asynchronously to the peer in the same shard



Clustering: Query
● Distributed query can be issued to query nodes 

● The node fanouts sub-queries to all shards in the cluster 

● The node aggregates the results from the sub-queries and return 



Unified Multi-Tenant Storage Platform

● ClickHouse natively supports zero lock contention among concurrent reads and writes

● Service placement: single-tenant vs multi-tenant

○ Isolate heavy log producers, heavy log consumers

○ Co-locate everything else

○ Limit the impact of co-location, add service in order-by 

● Workload isolation

○ Configure query parallelism per query

○ Eventually limit total query resource usage per node

○ Query cost accounting, defense against expensive queries



Q & A


