1027 predictive
models in 10 seconds

A journey of discovery and astonishment

David Pardo - Corunet



Wheo?

David Pardo @dei_biz

Co-owner @corunet. 43 people.

Data and metadata management for retail sector
You haven’t heard of us...

...but we’ve worked with your data




The problem

250 million records / 60GB

Up to seven variables (country, family, type, brand...)
one week bid

exploration vs. production

no big data. Neither small...

We know what we need. Answer two questions:

e What should have happened yesterday? (Anomalies)
e What’s going to happen within two weeks? (Forecast)



The easy part.

Experience with temporal series
Weka denselnstances
We (think we) know the variables:

country

dayOfYear

dayOfWeek
daysFromSales/daysToSales
specialDays (BF/Singles day/...)



The easy part. Weka

We only need a few thousand files like this to feed the model generator:

[
{"date”:"2016-01-017, “sales™: 7},

{"date™"2016-01-027, “sales™ 11},

]

By type, family, buyer, country. How many? Good question



250 million records? You can solve that
with a few indexes

*Spoiler: you can’t



When you've got a hammer...

Let’s import data into postgres and query it. Copy is fast, isn’t it?

copy sales ("id","time", "country"...) from 'd:\tmp\data.csv' DELIMITER ',' CSV HEADER;

Single transaction. No way.
Cut it in batches
<20K insert/s

It's gonna take quite a few hours... can we try something meanwhile?



We've got RAM, let's put it to use

Python + pandas
Spark

Apache beam?
Hadoop + parquet

(V)



clickwhat?

Let’s have a coffee while spark counts rows... wait... Somebody told me there was a
new columnar database

deb http://repo.yandex.ru/clickhouse/deb/stable/main/
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv E0C56BD4
sudo apt-get update

sudo apt-get install clickhouse-client clickhouse-server

It works!



Importing GSV data

CREATE TABLE default.sales

(
id_date Date,
time String,
country Int32,
country_name String,
country_iso String,
wh_code Int32,
wh_name String,
category UInt32,
sku String,
section_code UInt8,
product_type String,
product_name String,
color UInt8,
sale_units UInt32,
sale_amount Float32,
product_family_code UInts8,
product_family_name String,
product_class String,
product_class_name String,
product_line String,
piece UInt8

ENGINE = MergeTree(id_date, (id_date, product_family_code, sku), 8192)

tail -n +2 data.csv | time clickhouse-client --query="INSERT INTO ventas FORMAT CSV"



2:37.82s elapsed



You had my curiosity
Now you have my attention

SILVER.red.cor :) select count(x) from sales;

SELECT count(*)
FROM sales

——count()
241608813 |

1 rows in set. Elapsed: 0.031 sec. Processed 241.61 million rows, 241.61 MB (7.86 billion r¢

SILVER.red.cor :) select sum(sale_units) from sales;

SELECT sum(sale_units)
FROM sales

sum(sale_units)
[_ 301961464_W

1 rows in set. Elapsed: 0.280 sec. Processed 241.61 million rows, 966.44 MB (863.35 million

SILVER.red.cor :) select id_date, sum(sale_units) from sales group by id_date;[}



What?

2018-12-10
2018-12-11
2018-12-12
2018-12-13

rows in set. Elapsed: 0.328 sec. Processed 241.61 million rows, 1.45 GB (737.53 million rows/s., 4.43 GB/s.)






0.328s
Out of the hox
One node. No configuration



How many models?

SELECT
country_name,
section_code,
product_family_name,
product_line

FROM sales

GROUP BY
country_name,
section_code,
product_family_name,
product_line

QM0wed 1T1rsL 1vvvv.

15516 rows in set. Elapsed: 4.479 sec.



Way too many. Let's reduce it a bit

SELECT
sum(sale_units) AS total,
country_name,
section_code,
product_family_name,
product_line

FROM sales

GROUP BY
country_name,
section_code,
product_family_name,
product_line

HAVING sum(sale_units) >

ORDER BY total DESC



So, 1027 queries:

SELECT
sum(sale_units) AS total,
country_name,
section_code,
product_family_name,
product_line

FROM sales

GROUP BY
country_name,
section_code,
product_family_name,
product_line

HAVING sum(sale_units) >

ORDER BY total DESC

1027 rows in set. Elapsed: 4.708 sec. Processed 241.61 million row



Good enough. We can work it out!

First we get all possible combinations of (COUNTRY, SECTION, FAMILY, LINE)
We grab the data GROUPed BY date for each one

Then we feed the dense model generator

1027+1 queries (100% CPU) @10s/query -> ~3 hours + latency

Total time (5 h) with chart generation for the most complex series. Good
enough



Thank you?

But you said 10 seconds...



1027*713 = 732.251 rows

e How long would it take to get the full set?



The full query

SELECT
country_name_corrected,
section_code AS section,
product_line AS product_line,
product_family_name AS family,
id_date AS date,
sales AS sales,
total_units AS section_sales,
sales / total_units AS share
FROM
(
SELECT
country,
section_code,
product_line,
product_family_name,
id_date,
sum(sale_units) AS sales
FROM sales
GROUP BY
country,
section_code,
product_line,
product_family_name,
id_date
) AS per_family
ANY INNER JOIN
(

SELECT
country,

multiIf(country = 1, 'XXX', country = 2, 'YYY', country = 7, 'ZZZ', country = 437, 'AAA', country = 599, 'TTT', country_name) AS country_name_corrected,

section_code,
id_date,
sum(sale_units) AS total_units
FROM sales
GROUP BY
country,
country_name_corrected,
section_code,
id_date
) AS per_section USING (country, section_code, id_date)
ORDER BY id_date ASC



Showed first 10000.

794980 rows in set. Elapsed: 9.799 sec. Processed 483.22 million rows, 16.92 GB (49.32 million rows/s., 1.73 GB/s.)



The results:




The results

AN R RE AR
AR
REARE IR
I REAREAN: T
ARTREANEY
il
IR EREAR
R AREIE
1
[

t

£




Better than dataframes for data exploration
One size fits all. DEV & PRO

Perfect for dense model generation

If | wasn’t already married, I'd marry it.



Thank you!

@dei_biz. DMs open



