
Shipping Data from Postgres to ClickHouse

Murat Kabilov, Adjust GmbH

Who am I

Shipping from Postgres to ClickHouse

• psql -c "copy … to stdout" | clickhouse-client --query "INSERT INTO …"

• clickhouse FDW

• trigger-based solutions, pgq

• via Kafka

or you can use logical replication

Replication in Postgres

• WAL: write-ahead log contains binary changes of the data files 
 

• LSN: log sequence number, 64-bit integer representing a byte position in
the WAL stream

Replication

Physical Logical

Physical replication

byte-to-byte, the whole instance is replicated. replica is read-only

ReplicaMaster

Read/Write Read

wal sender wal receiverwal records

Logical replication

postgres >=10; only DML commands are replicated

MasterMaster

Read/Write Read/Write

wal sender
logical decoder

logical repl.
workerchanges

Publication Subscription

Output plugins
- built-in one: pgoutput
- decoderbufs (https://github.com/debezium/postgres-decoderbufs)
- wal2json (https://github.com/eulerto/wal2json):  
 "change": [

 {
 "kind": "insert",
 "schema": "public",
 "table": "table_with_pk",
 "columnnames": ["a", "b", "c"],
 "columntypes": ["int4", "varchar", "timestamp"],
 "columnvalues": [1, "Backup and Restore", "2015-08-27 16:46:35.818038"]
 }]  
 
- decoding-json (https://github.com/leptonix/decoding-json):  
 {"type":"transaction.begin","xid":"2010561","committed":"2015-04-22 
 19:23:35.714443+00"}
 {"type":"table","name":"abc","change":"INSERT","data":{"a":6,"b":7,"c":42}}
 {"type":"table","name":"abc","change":"UPDATE","key":{"a":6,"b":7},"data": 
 {"a":6,"b":7,"c":13}}

https://github.com/debezium/postgres-decoderbufs
https://github.com/eulerto/wal2json
https://github.com/leptonix/decoding-json

Logical replication

• Publisher/Subscriber model

• DML commands to replicate can be specified: insert, update,
delete, truncate

• Data is streamed only when transaction is committed

• Uses built-in pgoutput output plugin

Publication

CREATE PUBLICATION name 
 [FOR TABLE [ONLY] table_name [*] [, …] | FOR ALL TABLES] 
 [WITH (publication_parameter [= value] [, ...])]

e.g.  
CREATE PUBLICATION my_pub FOR ALL TABLES WITH (publish='insert');

How?

• INSERT

• TRUNCATE (starting from pg 11)

• UPDATE/DELETE

• we need to somehow identify old version of the row

Replica identity

ALTER TABLE … REPLICA IDENTITY …;

• Default: uses Primary Key

• Using index: uses unique index

• Full: uses all the columns of the row 
old values of all the columns are sent

• Nothing

pgoutput
• Begin: FinalLSN:0/2384C888 Timestamp:2019-03-15T13:00:41Z XID:870035

• Relation: OID:16414 Name:pgbench_accounts RepIica Identity:full Columns:[…]

• Update: Relation OID:16414 newValues:[…] oldValues:[…]

• Relation: OID:16408 Name:pgbench_history RepIica Identity:full Columns:[…]

• Insert: Relation OID:16408 values:[…]

• Delete: Relation OID:16414 values:[…]

• Commit: LSN:0/2384C888 Timestamp:2019-03-15T13:00:41Z TxEndLSN:
0/2384C8B8

Logical replication

MasterMaster

Read/Write Read/Write

wal sender
logical decoder

logical repl.
workerchanges

Publication Subscription

pg2ch

Read/Write

wal sender
logical decoder pg2chchanges

pg2ch
•written in Go

• can create initial copy and keeps the position of the

changes

• uses vanilla postgres (ver ≥10), no plugins/

extensions required

• uses internal buffer to accumulate the data

• can use intermediate buffer table on the ClickHouse

side

pg2ch
tables:
 pgbench_accounts:
 main_table: ch_accounts
 engine: CollapsingMergeTree
 sign_column: sign
 max_buffer_length: 1000 

...

clickhouse:
 host: localhost
 database: default
 username: default
 
pg:
 host: localhost
 database: pg2ch
 user: postgres
 replication_slot_name: my_slot
 publication_name: my_pub

lsnStateFilepath: state.yaml
inactivity_flush_timeout: ‘30s'

pg2ch

• currently supports MergeTree,
ReplacingMergeTree and CollapsingMergeTree
table engines

CollapsingMergeTree
• requires sign column in the table on the ClickHouse side

• requires FULL Replica Identity for the replicating table

• on UPDATE inserts two rows:

• with -1 in the sign column to “cancel” row (thanks to FULL

replica identity)

• with 1 to “state” row

• on DELETE only “cancel” row is inserted

CollapsingMergeTree

user_id name surname sign
42 John Doe 1

user_id name surname sign
42 John Doe 1
42 John Doe -1
42 Richard Doe 1

ReplacingMergeTree

• requires version column in the table on the ClickHouse side

• LSN (UInt64) is used as a version

• What to do with DELETES?

ReplacingMergeTree

user_id name surname ver
1 John Doe 1000

user_id name surname ver
1 John Doe 1000
1 Richard Doe 1003

MergeTree

• only INSERTS operations are replicated

• DELETE/UPDATES are discarded

Thank you! 
Questions?

Links

• https://github.com/mkabilov/pg2ch

• https://www.postgresql.org/docs/current/logical-replication.html

• https://wiki.postgresql.org/wiki/Logical_Decoding_Plugins

• https://www.postgresql.org/docs/current/protocol-logicalrep-message-
formats.html

• https://clickhouse.yandex/docs/en/operations/table_engines/

• https://github.com/Percona-Lab/clickhousedb_fdw

https://github.com/mkabilov/pg2ch
https://www.postgresql.org/docs/current/logical-replication.html
https://wiki.postgresql.org/wiki/Logical_Decoding_Plugins
https://www.postgresql.org/docs/current/protocol-logicalrep-message-formats.html
https://www.postgresql.org/docs/current/protocol-logicalrep-message-formats.html
https://clickhouse.yandex/docs/en/operations/table_engines/
https://github.com/Percona-Lab/clickhousedb_fdw

