7:00pm: ClickHouse introduction - Alexander Zaitsev (Altinity)
7:30pm: Using ClickHouse for experimentation metrics at Spotify - Gleb Kanterov (Spotify)
8:20pm: Deep dive into ClickHouse internals - Aleksey Milovidov (Yandex)

ClickHouse Analytical DBMS

Introduction

What Is ClickHouse?

ClickHouse DBMS is

* Column Store

+ MPP

ClickHouse Timeline

Developed inYandex in 2012-2015
Open Sourced June 2016
First non-Yandex deployments Q4 2016

Hundreds of companies by Q2 2018

Why Yet Another DBMS?

ClickHouse

e Fast! "".

- How Fast?

:) select count(*) from dw.T

SELECT count(*)
FROM dw.T

count()—

1185063669477 |
I

1 rows in set. Elapsed: 4.361 sec. Processed 1.19 trillion
rows, 1.19 TB (271.73 billion rows/s., 271.73 GB/s.)

“1.1 Billion Taxi Rides Benchmarks”

Query1
0.034
0.051
0.762
1.034
1.56

2

6.41
8.1
14.389
22

35
152

Query 2
0.061
0.146
2.472
3.058
1.25

2

6.19
18.18
32.148
25

39

175

Query 3
0.178
0.047
4.131
5-354
2.25

1

6.09
n/a
334438
27

64

235

Query 4
0.498

0.794
6.041

12.748
2.97

3
6.63

n/a
67.312
65

81
368

Setup

MapD & 2-node p2.8xlarge cluster
kdb+/q & 4 Intel Xeon Phi 7210 CPUs
BrytlytDB 1.0 & 2-node p2.16xlarge cluster
ClickHouse, Intel Core i5 4670K

Redshift, 6-node ds2.8xlarge cluster
BigQuery

Amazon Athena

Elasticsearch (heavily tuned)

Vertica, Intel Core i5 4670K

Spark 2.3.0 & single i3.8xlarge w/ HDFS
Presto, 5-node m3.xlarge cluster w/ HDFS
PostgreSQL 9.5 & cstore_fdw

*1.1 Billion Taxi Rides Benchmarks”

Query1 Query2 Query3 Queryy4 Setup
0.034 0.061 0.178 0.498 MapD & 2-node p2.8xlarge cluster
0.051 0.146 0.047 0.794 kdb+/q & 4 Intel Xeon Phi 72120 CPUs
3 2.415 3.599 4.962 ClickHouse at Kodiak Data server
0.762 2.472 4.131 6.041 BrytlytDB 1.0 & 2-node p2.16xlarge cluster
1.034 3.058 5.354 12.748 ClickHouse, Intel Core ig 4670K
1.56 1.25 2.25 2.97 Redshift, 6-node ds2.8xlarge cluster

p) p) 1 3 BigQuery

WAl 6.19 6.09 6.63 Amazon Athena

8.1 18.18 n/a n/a Elasticsearch (heavily tuned)

14.389 32.148 33.448 67.312 Vertica, Intel Core i5 4670K

22 25 27 65 Spark 2.3.0 & single i3.8xlarge w/ HDFS
35 39 YA 81 Presto, 5-node m3.xlarge cluster w/ HDFS

152 iy 235 368 PostgreSQL 9.5 & cstore_fdw

ClickHouse runs at

* Bare metal (any Linux)

e Amazon

e Azure

Total Query TIMe (For different ClickHouse and RedShift setups, less is better)

162
$45 /wk B Kodiak MemCloud
| Aws

18
$100 /wk —

r4.xlarge x1 13.2xlarge x1 i3.4xlarge x1 Kodiak Al Kodiak A3 RS dc2.8xlarge

Clickhouse and RedShift Setups

10,0
9,0
8,0 M Single Table SELECT
70 GROUP BY
6,0
o M JOIN t USING t_key
! WHERE<t.smth>?
4,0
3,0 ® JOIN (SELECT * FROM t
2,0 WHERE <smth>) USING
t_key

Real companies are using ClickHouse for:

* Mobile App and Web analytics
* AdTech bidding analytics

* Operational Logs analytics

* DNS queries analysis

* Stock correlation analytics

e Telecom

,\ Worldwide
-rh 1

visits in 2018

Size does not matter
SESEES

Happy Migrations!

From MySQL/InfoBright/ » SPEED!
PostreSQL/Spark to ClickHouse

From Vertica/RedShift to » COST!
ClickHouse VENDOR UN-LOCKING!

03.07 19:00 CLICKHOUSE GATE 2 boarding
03.0/7 19:30 CLICKHOUSE GATE 3
03.0/7 20:00 CLICKHOUSE GATE 4

Few Case Studies

LIFESTR==T

* AdTech (ad exchange, ad server, RTB, DMP etc.)
* Ad Optimization, programmatic bidding
* A lot of data:

Used Vertica, but needed to move

.. migration was not easy

* More details at October 2017 Berlin Meetup

Major Design Decisions

Dictionaries for star-schema design

Extensive use of Arrays

SummingMergeTree for realtime aggregation
Smart query generation

Multiple shards and replicas

Results

* Successful migration, 1y+ in production

* Better performance and flexibility
— 75B rows/day

— 1Mrows/sec in peak hours

— 1.3MSQL queries /day

Case 2. Fintech Company

* Stock Symbols Correlation Analysis

* 5000 Symbols

* 10 Vvears of data

—

— 100B data points

Al

l"!q “ | ‘

Ma o al) 'V \\

Mo

Challenge

* (time, symbol, price) - 100 billion
* log_return = runningDifference(log(price)) - 100 billion times
* corr(s1,s2) = corr(log_return(s1),log_return(s2))

For every pair (s1,52) from 5000 s(i), 12.5M pairs overall

e Group by hours

Very slow

Tried...

""I ClickHouse

=

]
— 0

time time time date+hour

symbol symbol groupArray(symbol) corr(S(i),5()))
price logReturn(price) groupArray(logRet..)

POC Performance Results

* 3 serverssetup

* 2years, 5000 symbols:
— log_return calculations: ~1 h (distributed)
— Converting to arrays: ~ 1 h (almost distributed)

— Correlations: ~5o hours (also distributed

Case 3. lvinco

* Mature boardreader system

* A lot of data collected from different sources

* A lot of operational data (performance monitoring)

Operational problems

* Hard to scale

* Hard to make HA solution

e Performance issues:

Organizational problems

* No development resources to rewrite

* Minimal changes to current system are

Binary log replication from
MySQL to ClickHouse

It

cllckhouse -m sI

Querles

- MySQL

Source Data

Results

* Seamless integration of ClickHouse into the current system
* No developers/coding involved, project is done with DevOps
* Easy to test performance side by side (ClickHouse is 100 times faster)

* Now ready to re-write main system

ClickHouse Today

* Mature Analytic DBMS. Proven by many companies
* 2+ yearsin Open Source

* Transparent development roadmap

* Many community contributors

O&A 111§

Contact me:

alexander.zaitsev@lifestreet.com

alz@altinity.com

skype: alex.zaitsev

