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Quick tour of ClickHouse internals



A stream of events 

› Actions of website visitors 

› Ad impressions 

› DNS queries 

› E-commerce transactions 

› … 

 We want to save info about these events and then glean some 
insights from it

ClickHouse use cases
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› Interactive queries on data updated in real time 

› Cleaned structured data is needed 

› Try hard not to pre-aggregate anything 

› Query language: a dialect of SQL + extensions

ClickHouse philosophy
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Top-10 referers for a website for the last week. 

SELECT Referer, count(*) AS count
FROM hits
WHERE CounterID = 111 AND Date >= today() - 7
GROUP BY Referer
ORDER BY count DESC
LIMIT 10

Sample query in a web analytics system

4



Read data fast 

› Only needed columns: CounterID, Date, Referer 

› Locality of reads (an index is needed!) 

› Data compression

How to execute a query fast?
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Read data fast 

› Only needed columns: CounterID, Date, Referer  

› Locality of reads (an index is needed!) 

› Data compression 

Process data fast 

› Vectorized execution (block-based processing) 

› Parallelize to all available cores and machines 

› Specialization and low-level optimizations

How to execute a query fast?
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The principle is the same as with classic DBMSes 

A majority of queries will contain conditions on 
CounterID and (possibly) Date 

(CounterID, Date) fits the bill 

Check this by mentally sorting the table by primary key 

Differences 

› The table will be physically sorted on disk 

› Is not a unique constraint

Index needed!
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Index internals
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Index is sparse 

› Must fit into memory 

› Default value of granularity (8192) is good enough 

› Does not create a unique constraint 

› Performance of point queries is not stellar 

Table is sorted according to the index 

› There can be only one 

› Using the index is always beneficial

Things to remember about indexes
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Inserted events are (almost) sorted by time 

But we need to sort by primary key! 

MergeTree: maintain a small set of sorted parts 

Similar idea to an LSM tree

How to keep the table sorted
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How to keep the table sorted
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How to keep the table sorted
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How to keep the table sorted
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How to keep the table sorted
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Replace/update records 

› ReplacingMergeTree 

› CollapsingMergeTree 

Pre-aggregate data 

› AggregatingMergeTree 

Metrics rollup 

› GraphiteMergeTree

Things to do while merging
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ENGINE = MergeTree … PARTITION BY toYYYYMM(Date)

› Table can be partitioned by any expression (default: by month) 

› Parts from different partitions are not merged 

› Easy manipulation of partitions  
 
ALTER TABLE DROP PARTITION  
ALTER TABLE DETACH/ATTACH PARTITION

› MinMax index by partition columns 

MergeTree partitioning
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Merging runs in the background 

› Even when there are no queries! 

Control total number of parts 

› Rate of INSERTs 

› MaxPartsCountForPartition and DelayedInserts 
metrics are your friends

Things to remember about MergeTree
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› The data won’t fit on a single server… 

› You want to increase performance by adding more servers… 

› Multiple simultaneous queries are competing for resources…

When one server is not enough
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› The data won’t fit on a single server… 

› You want to increase performance by adding more servers… 

› Multiple simultaneous queries are competing for resources… 

ClickHouse: Sharding + Distributed tables!

When one server is not enough
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Reading from a Distributed table
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Shard 1 Shard 2 Shard 3

SELECT FROM distributed_table
GROUP BY column

SELECT FROM local_table
GROUP BY column



Reading from a Distributed table
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Shard 1 Shard 2 Shard 3

Full result

Partially aggregated
result



CSV 227 Gb, ~1.3 bln rows 

SELECT passenger_count, avg(total_amount)  
FROM trips GROUP BY passenger_count

NYC taxi benchmark
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Shards 1 3 140

Time, s. 1,224 0,438 0,043

Speedup x2.8 x28.5



Inserting into a Distributed table
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Shard 1 Shard 2 Shard 3

INSERT INTO distributed_table



Inserting into a Distributed table
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Shard 1 Shard 2 Shard 3

Async insert into shard #
sharding_key % 3

INSERT INTO local_table



Inserting into a Distributed table
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Shard 1 Shard 2 Shard 3

Split by sharding_key and insert

SET insert_distributed_sync=1;
INSERT INTO distributed_table…;



It is just a view 

 › Doesn’t store any data by itself 

Will always query all shards  

Ensure that the data is divided into shards uniformly 

› either by inserting directly into local tables 

› or let the Distributed table do it  
(but beware of async inserts by default)

Things to remember about Distributed tables
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› Protection against hardware failure 

› Data must be always available for reading and writing

When failure is not an option
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› Protection against hardware failure 

› Data must be always available for reading and writing 

ClickHouse: ReplicatedMergeTree engine! 

› Async master-master replication 

› Works on per-table basis

When failure is not an option
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Replication internals
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Replica 1

Replica 2
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What happens in case of network failure (partition)? 

› Not consistent❋  
As is any system with async replication 
❋But you can turn linearizability on 

› Highly available (almost)❋  
Tolerates the failure of one datacenter, if ClickHouse replicas 
are in min 2 DCs and ZK replicas are in 3 DCs. 
❋A server partitioned from ZK quorum is unavailable for writes

Replication and the CAP–theorem

30



Putting it all together
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Shard 1
Replica 1

Shard 2
Replica 1

Shard 3
Replica 1

Shard 1
Replica 2

Shard 2
Replica 2

Shard 3
Replica 2

SELECT FROM distributed_table

SELECT FROM replicated_table



Use it! 

› Replicas check each other 

› Unsure if INSERT went through?  
Simply retry - the blocks will be deduplicated 

› ZooKeeper needed, but only for INSERTs  
(No added latency for SELECTs) 

Monitor replica lag 

› system.replicas and system.replication_queue 
tables are your friends

Things to remember about replication
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› Column–oriented 

› Fast interactive queries on real time data 

› SQL dialect + extensions 

› Bad fit for OLTP, Key–Value, blob storage 

› Scales linearly 

› Fault tolerant 

› Open source!

Brief recap
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Questions? Or reach us at: 

› clickhouse-feedback@yandex-team.com 

› Telegram: https://t.me/clickhouse_en 

› GitHub: https://github.com/yandex/ClickHouse/ 

› Google group: https://groups.google.com/group/clickhouse 

Thank you
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