
Aleksey Zatelepin

Quick tour of ClickHouse internals

A stream of events

› Actions of website visitors

› Ad impressions

› DNS queries

› E-commerce transactions

› …

 We want to save info about these events and then glean some
insights from it

ClickHouse use cases

2

› Interactive queries on data updated in real time

› Cleaned structured data is needed

› Try hard not to pre-aggregate anything

› Query language: a dialect of SQL + extensions

ClickHouse philosophy

3

Top-10 referers for a website for the last week.

SELECT Referer, count(*) AS count
FROM hits
WHERE CounterID = 111 AND Date >= today() - 7
GROUP BY Referer
ORDER BY count DESC
LIMIT 10

Sample query in a web analytics system

4

Read data fast

› Only needed columns: CounterID, Date, Referer

› Locality of reads (an index is needed!)

› Data compression

How to execute a query fast?

5

Read data fast

› Only needed columns: CounterID, Date, Referer

› Locality of reads (an index is needed!)

› Data compression

Process data fast

› Vectorized execution (block-based processing)

› Parallelize to all available cores and machines

› Specialization and low-level optimizations

How to execute a query fast?

6

The principle is the same as with classic DBMSes

A majority of queries will contain conditions on 
CounterID and (possibly) Date

(CounterID, Date) fits the bill

Check this by mentally sorting the table by primary key

Differences

› The table will be physically sorted on disk

› Is not a unique constraint

Index needed!

7

Index internals

8

222
…

2018-01-25

2017-07-22

…

111
111

111

…

2017-10-04

…

2013-02-16222
2013-03-12

primary.idx

CounterID

(One entry each 8192 rows)

Date Referer

N

N+8192

N+16384

(CounterID, Date)

.mrk .mrk .mrk.bin .bin .bin

Index is sparse

› Must fit into memory

› Default value of granularity (8192) is good enough

› Does not create a unique constraint

› Performance of point queries is not stellar

Table is sorted according to the index

› There can be only one

› Using the index is always beneficial

Things to remember about indexes

9

Inserted events are (almost) sorted by time

But we need to sort by primary key!

MergeTree: maintain a small set of sorted parts

Similar idea to an LSM tree

How to keep the table sorted

10

How to keep the table sorted

11

Primary key
Part

on disk
To

insert

Insertion number
M N N+1

How to keep the table sorted

12

Primary key
Part

on disk
Part

on disk

Insertion number
M N N+1

How to keep the table sorted

13

Insertion number

Primary key
Part

[M, N]
Part

[N+1]

Merge in the background

M N N+1

How to keep the table sorted

14

Part
[M, N+1]

Insertion number

Primary key

M N+1

Replace/update records

› ReplacingMergeTree

› CollapsingMergeTree

Pre-aggregate data

› AggregatingMergeTree

Metrics rollup

› GraphiteMergeTree

Things to do while merging

15

ENGINE = MergeTree … PARTITION BY toYYYYMM(Date)

› Table can be partitioned by any expression (default: by month)

› Parts from different partitions are not merged

› Easy manipulation of partitions  
 
ALTER TABLE DROP PARTITION  
ALTER TABLE DETACH/ATTACH PARTITION

› MinMax index by partition columns 

MergeTree partitioning

16

Merging runs in the background

› Even when there are no queries!

Control total number of parts

› Rate of INSERTs

› MaxPartsCountForPartition and DelayedInserts
metrics are your friends

Things to remember about MergeTree

17

› The data won’t fit on a single server…

› You want to increase performance by adding more servers…

› Multiple simultaneous queries are competing for resources…

When one server is not enough

18

› The data won’t fit on a single server…

› You want to increase performance by adding more servers…

› Multiple simultaneous queries are competing for resources…

ClickHouse: Sharding + Distributed tables!

When one server is not enough

19

Reading from a Distributed table

20

Shard 1 Shard 2 Shard 3

SELECT FROM distributed_table
GROUP BY column

SELECT FROM local_table
GROUP BY column

Reading from a Distributed table

21

Shard 1 Shard 2 Shard 3

Full result

Partially aggregated
result

CSV 227 Gb, ~1.3 bln rows

SELECT passenger_count, avg(total_amount)  
FROM trips GROUP BY passenger_count

NYC taxi benchmark

22

Shards 1 3 140

Time, s. 1,224 0,438 0,043

Speedup x2.8 x28.5

Inserting into a Distributed table

23

Shard 1 Shard 2 Shard 3

INSERT INTO distributed_table

Inserting into a Distributed table

24

Shard 1 Shard 2 Shard 3

Async insert into shard #
sharding_key % 3

INSERT INTO local_table

Inserting into a Distributed table

25

Shard 1 Shard 2 Shard 3

Split by sharding_key and insert

SET insert_distributed_sync=1;
INSERT INTO distributed_table…;

It is just a view

 › Doesn’t store any data by itself

Will always query all shards  

Ensure that the data is divided into shards uniformly

› either by inserting directly into local tables

› or let the Distributed table do it  
(but beware of async inserts by default)

Things to remember about Distributed tables

26

› Protection against hardware failure

› Data must be always available for reading and writing

When failure is not an option

27

› Protection against hardware failure

› Data must be always available for reading and writing

ClickHouse: ReplicatedMergeTree engine!

› Async master-master replication

› Works on per-table basis

When failure is not an option

28

Replication internals

29

Replica 1

Replica 2

Replica 3
merge

Replication
queue

(ZooKeeper)

Inserted block number

fetch
fetch

INSERT

merge

What happens in case of network failure (partition)?

› Not consistent❋  
As is any system with async replication
❋But you can turn linearizability on

› Highly available (almost)❋  
Tolerates the failure of one datacenter, if ClickHouse replicas 
are in min 2 DCs and ZK replicas are in 3 DCs.
❋A server partitioned from ZK quorum is unavailable for writes

Replication and the CAP–theorem

30

Putting it all together

31

Shard 1
Replica 1

Shard 2
Replica 1

Shard 3
Replica 1

Shard 1
Replica 2

Shard 2
Replica 2

Shard 3
Replica 2

SELECT FROM distributed_table

SELECT FROM replicated_table

Use it!

› Replicas check each other

› Unsure if INSERT went through?  
Simply retry - the blocks will be deduplicated

› ZooKeeper needed, but only for INSERTs  
(No added latency for SELECTs)

Monitor replica lag

› system.replicas and system.replication_queue
tables are your friends

Things to remember about replication

32

› Column–oriented

› Fast interactive queries on real time data

› SQL dialect + extensions

› Bad fit for OLTP, Key–Value, blob storage

› Scales linearly

› Fault tolerant

› Open source!

Brief recap

33

Questions? Or reach us at:

› clickhouse-feedback@yandex-team.com

› Telegram: https://t.me/clickhouse_en

› GitHub: https://github.com/yandex/ClickHouse/

› Google group: https://groups.google.com/group/clickhouse

Thank you

34

mailto:clickhouse-feedback@yandex-team.ru

