Il ClickHouse

Inverted database indexes: The
why, the what, and the how.

Elmi Ahmadov, Software Engineer @ ClickHouse

Open source

e Development started 2009
e Production 2012

e 0SS 2016

©2026 CLICKHOUSE INC., CONFIDENTIAL & PROPRIETARY

What is ClickHouse?

Your (soon-to-be) favorite database!

Column-oriented

e Best for aggregations
e Files per column
e Sorting and indexing

e Background merges

Distributed

Replication
Sharding
Multi-master

Cross-region

OLAP database

Analytics use cases
Aggregations
Visualizations

Mostly immutable data

llll: ClickHouse

ClickHouse full-text search journey

V99690 °9

Released as an

experimental feature

Private Preview
access of our

ClickHouse Cloud Beta version is

Implementation of the offering released
experimental inverted
index development Re-implementation
started. started

Illl: ClickHouse

Il ClickHouse

Use case

What is the problem?

Example use case: Observability

— —
222 |
Level Message Timestamp
... 1B rows ...
DEBUG 311’;;;;;""“"" 2026-01-20 15:12:37
INFO analytics 2026-01-20 15:12:41 2
ERROR Pos;i;;li_;t for a t(;;;l_;giickhouse" is empty | 2026-01-20 15:12:43
... 1B rows ...

llll* ClickHouse

Example use case: Observability

— ——
R |
Level Message Timestamp
... 1B rows ...
DEBUG an;-l;;;-------—------- 2026-01-20 15:12:37
INFO analytics 2026-01-20 15:12:41
ERROR Pos;;;-h:;t for a t(-);enr-l_;gickhouse" is empty | 2026-01-20 15:12:43
... 1B rows ...

SELECT count() FROM

logs WHERE hasAllTokens(message,

['token', 'is'

‘empty']);

llll* ClickHouse

Example use case: Observability

— —
R |
Level Message Timestamp
... 1B rows ...
DEBUG an;-l;;;-------—m---- 2026-01-20 15:12:37
INFO analytics 2026-01-20 15:12:41
ERROR Pos;iwr;;l_i'.st for a t(-);enr-l_;gickhouse" is empty | 2026-01-20 15:12:43
... 1B rows ...

SLOW! FULL TABLE SCAN!

llll* ClickHouse

What is a granule?

timestamp

_.===] 2024-01-01 10:00:00

2024-01-01 10:05:23

2024-01-01 10:12:45

2024-01-01 10:20:11

"
Granule 0

(Rows 1-8192)

2024-01-01 11:58:33

~

=4 2024-01-01 12:00:01

== 2024-01-01 12:30:15

e
4"
-

Granule 1

2024-01-01 12:35:22

The rows of a part are further

(Rows 8193-16384)
\

2024-01-01 12:40:10

2024-01-01 14:25:45

2024-01-01 14:30:00

e A granule represents the smallest
indivisible data unit processed by
the scan and index lookup operators
in ClickHouse.

logically divided into groups of 8192
records, called granules.

llll* ClickHouse

Tokenizers

2026.01.31::12:57:01 {0bd92626-e789-49b2-aac5-e35084b7bc0B8} <Debug>

e splitByNonAlpha = ['20626', '©1', '31"', "12', '...',
'0bd92626 "']

e splitByString(['::', " ']) = ['2026.01.31", "12:57:01",
'0bd92626-e789-49b2-aac5-e35084b7bc08 "']

e ngrams(3) = ['202', '026', '26.', '6.1', '...', 'ug>']

e array = ['2026.01.31:12:57:01
{0bd92626-e789-49b2-aac5-e35084b7bc08} <Debug>']

llll* ClickHouse

Il ClickHouse

Solution: Full-text

search
Building blocks

The new text index

CREATE TABLE table (

text String,
INDEX idx_text(text) TYPE text(tokenizer =
splitByNonAlpha |
splitByString(['::", ' ']) |
ngrams(N) |
sparseGrams(min, max) |
array

)
ENGINE = MergeTree

ORDER BY “time';

llll* ClickHouse

New functions

e Two new functions have been introduced
o hasAnyTokens, finds columns containing any search tokens
SELECT count() FROM hackernews
WHERE hasAnyTokens(text, ['clickhouse', 'fosdem']);
o hasAllTokens, finds columns containing all search tokens

SELECT count() FROM hackernews
WHERE hasAllTokens(text, ['clickhouse', 'fosdem']);

llll* ClickHouse

Inverted index

e Inverted index (token — documents)

Term Dictionary Posting Lists

Documents the 4_‘ [1, 2]

ID Content Terms quick [1, 3]

1 | The quick brown fox | [the, quick, brown, fox] n brown [1, 3]
2 The lazy dog [the, lazy, dog] | fox [1]
3 | Quick brown rabbits | [quick, brown, rabbits] L lazy l [2]

—_—

dog] [2]
rabbits 7‘ , [3]

llll* ClickHouse

How the data is organized

e While building an index, we

maintain a hash table to store a

token — posting list mapping.

e \When flushed to disk, an inverted
. T index consists of three files on disk
next to the column data file.
idx_postings.bin

llll* ClickHouse

Dictionary blocks & sparse index

Unsorted Tokens
e o

timeout

connected

error

connection

timeouts

errors

connect

Sort —

n:orted Tokens

connect

connected

connection

error

errors

timeout

]

timeouts

T

e First, all terms are sorted
alphabetically

llll* ClickHouse

Dictionary blocks & sparse index

Sorted Tokens

connect

connected

connection

timeouts

Split into Blocks
+ Front-Coding —

Dictionary Blocks (Front-Coded)

|

Block 0

connect

(0, connect)

connected

(7, ed)

connection

(7, ion)

Block 1

error

(0, error)

€rrors

(C)

Block 2

timeout

(0, timeout)

—

timeouts

(7:s)

First, all terms are sorted
alphabetically

Sorted terms are splitted into

blocks:

o Dictionary blocks are compressed by

the front-coding compression

llll* ClickHouse

Dictionary blocks & sparse index

Dictionary Blocks (Front-Coded)

Block 0

Posting List File

connect

(0, connect)

connected

(7, ed)

[1,5,8]

[2,7]

connection

(7, ion)

[1,3,9]

error

(0, error)

[4,6,10]

Block 1

[5,11]

erTrors

(0, errors)

[2,8,12]

timeout

(0, timeout)

timeouts

(7, 5)

[3,9]

f
|

First, all terms are sorted
alphabetically

Sorted terms are splitted into

blocks:
o Dictionary blocks are compressed by
the front-coding compression

o Each term stores to an offset of its
postings in the posting list file

llll* ClickHouse

Dictionary blocks & sparse index

Dictionary Blocks (Front-Coded)

Block 0

connect

(0, connect)

Sparse Index

connected

(7, ed)

Index

First Token

connection

(7, ion)

0

connect

error

(0, error)

1

errors

Block 1

errors

(0, errors)

timeout

(0, timeout)

timeouts

(7, 5)

Block N

First, all terms are sorted
alphabetically

Sorted terms are splitted into

blocks:
o Dictionary blocks are compressed by
the front-coding compression.

o Each term stores to an offset of its
postings in the posting list file.

The sparse index points to the

beginning of blocks.
llll* ClickHouse

Il ClickHouse

What happened!?

"clickhouse"

e

[Step 1: Sparse Index

;

Block] First Token | Offset

il

0 analytics 0 ‘H
1 click 512 ‘ﬁ
2 APJ error

1024

€%

.

e Binary search on sparse index

llll* ClickHouse

What happened!?

e Binary search on sparse index

Step 1: Sparse Index Step 2: Dict Block 1 (at 512)
, e Search token in a dictionary
Block [First Token j Offset L Token Enc } Offset
block
0 analytics 0 click (0,..) | 2048
1 click 512 Flickhouse (5,..) | 2156
2 error 1024 cluster (5,..) ¢ 2280

llll* ClickHouse

What happened!?

Step 2: Dict Block 1 (at 512)

Token Enc |} Offset

click 0,.) | 2048

clickhouse | (5,..) | 2156

cluster (5...) 1 2280

Step 3: Posting List (at 2156)

Doc IDs

/
| [5, 12, 23,45, 67, ...] 7

Binary search on sparse index

Search token in the dictionary

block

If present, read the posting list

llll* ClickHouse

What happened!?

T

Step 4: Boolean Column

Doc IDs

Row ID

Match

0

Step 3: Posting List (at 2156)

[5,12, 23, 45, 67, ...]

0

Binary search on sparse index

Search token in the dictionary
block

If present, read the posting list

Fill the result column with doc
IDs

llll* ClickHouse

Text index optimization

e Use the virtual boolean column instead of the original filter condition

SELECT count() FROM hackernews
WHERE hasAnyTokens(text, ['clickhouse']);

-- _text_virt_column is filled during optimization.

SELECT count() FROM hackernews
PREWHERE _text_virt_column = 1;

llll* ClickHouse

Putting it all together

"clickhouse"

Step 1: Sparse Index

Step 2: Dict Block 1 (at 512)

Step 3: Posting List (at 2156)

Step 4: Boolean Column

Block | First Term | Offset
0 analytics 0
1 click 512
2 error 1024

Term Enc | Offset

click 0,..) | 2048

clickhouse § (5,..) } 2156

cluster (5,..) | 2280
|

Term Doc IDs
/ [5,12, 23,
clickhouse 45,67, .1

Row ID Match
1 0
2 0
5 1
12 1

llll* ClickHouse

Summary - lloved it! Canltry it myself?

e ClickHouse DB has a state-of-the-art full-text search now
o Full-text search BETA version is available on ClickHouse OSS
since v25.12

e \We offer a private preview for our ClickHouse Cloud customers

e More features are coming
o Phrase search (a.k.a positional queries)

o Scoring (BM25)

llll* ClickHouse

Your search ends here

Thanks! Questions?

Illl: ClickHouse

Il ClickHouse

Connect with ClickHouse

ClickHouse
Community Dinner

Try ClickHouse for
your use case

e ClickHouse Cloud
e Download open source

Learn
e Academy / certifications

e Blogs / YouTube

Engage with

our community

e Community Slack

e Monthly Community calls

e Meetups / events

We are Hiring. Come
Work with Us!

Illl: ClickHouse

