
Hotpatching ClickHouse in
production with XRay

FOSDEM 2026

Pablo Marcos Oltra

©2026 CLICKHOUSE INC2

$ whoami

● Pablo Marcos Oltra

● Software Engineer @ ClickHouseʼs Core Team

● Systems Developer

● Passionate about videogame development

● Interested in compilers, build systems and

new programming languages

Who knows what
hotpatching/hot reloading
is?

Who knows what LLVMʼs
XRay is?

Whoʼs had to debug something in
production and wished they had
added an extra log to know whatʼs
happening?

What is hotpatching01

©2026 CLICKHOUSE INC7

Hotpatching: The basics
● Change the code while the process is running

● Allows faster iteration

● Often done in videogame development

○ Hot reloading rather than hotpatching

○ Client-server architecture where the lightweight client loads a new version of the
game (in a shared library)

○ Examples

■ http://runtimecompiledcplusplus.blogspot.com.es

■ https://fungos.github.io/cr-simple-c-hot-reload

■ https://liveplusplus.tech

http://runtimecompiledcplusplus.blogspot.com.es/
https://fungos.github.io/cr-simple-c-hot-reload/
https://liveplusplus.tech/

©2026 CLICKHOUSE INC8

Hotpatching: Adding instrumentation
● -finstrument-functions : Generates instrumentation code for every function entry/exit

void __cyg_profile_func_enter(void *this_fn, void *call_site);

void __cyg_profile_func_exit(void *this_fn, void *call_site);

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-finstrument-functions

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-finstrument-functions

©2026 CLICKHOUSE INC9

Hotpatching: Adding instrumentation
● -fpatchable-function-entry=N,M

Generate M NOPs before function entry
and NM NOPs after function entry

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-fpatchable-function-entry

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-fpatchable-function-entry

XRay02

©2026 CLICKHOUSE INC11

XRay
XRay consists of three main parts:

1. Compiler-inserted instrumentation points.

2. A runtime library for enabling/disabling tracing at runtime.

3. A suite of tools for analysing the traces.

As of July 25, 2018, XRay is only available for the following architectures running Linux:

x86_64, arm7 (no thumb), aarch64, powerpc64le, mips, mipsel, mips64, mips64el, NetBSD: x86_64,
FreeBSD: x86_64 and OpenBSD: x86_64.

https://llvm.org/docs/XRay.html

https://llvm.org/docs/XRay.html

©2026 CLICKHOUSE INC12

XRay: Example

©2026 CLICKHOUSE INC13

XRay: Example

©2026 CLICKHOUSE INC14

XRay: Example

$ clang++ -o test_xray test_xray.cpp -fxray-instrument
-fxray-instruction-threshold=1

$./test_xray

FuncID: 1, Type: 0

Foo!

FuncID: 1, Type: 1

©2026 CLICKHOUSE INC15

XRay: xray_instr_map

$ objdump -h -j xray_instr_map test_xray

test_xray: file format elf64-x86-64

Sections:

Idx Name Size VMA LMA File off Algn

 17 xray_instr_map 00000080 000000000002c6c4 000000000002c6c4 0002c6c4
2**0

 CONTENTS, ALLOC, LOAD, READONLY, DATA

©2026 CLICKHOUSE INC16

XRay: Before patching foo

$ (lldb) dis -C 10

test_xray`foo:

-> 0x555555578360 <+0>: jmp 0x55555557836b ; <+11>

 0x555555578362 <+2>: nopw 0x200(%rax,%rax)

 0x55555557836b <+11>: pushq %rbp

 0x55555557836c <+12>: movq %rsp, %rbp

 0x55555557836f <+15>: leaq 0x8348(%rip), %rdi

 0x555555578376 <+22>: movb $0x0, %al

 0x555555578378 <+24>: callq 0x555555556040 ; symbol stub for: printf

 0x55555557837d <+29>: popq %rbp

 0x55555557837e <+30>: retq

 0x55555557837f <+31>: nopw %cs:0x200(%rax,%rax)

entry sled

exit sled

©2026 CLICKHOUSE INC17

XRay: After patching foo

$ (lldb) dis -C 10

test_xray`foo:

-> 0x555555578370 <+0>: movl $0x1, %r10d

 0x555555578376 <+6>: callq 0x555555574340 ; __xray_FunctionEntry

 0x55555557837b <+11>: pushq %rbp

 0x55555557837c <+12>: movq %rsp, %rbp

 0x55555557837f <+15>: leaq 0x8338(%rip), %rdi

 0x555555578386 <+22>: movb $0x0, %al

 0x555555578388 <+24>: callq 0x555555556040 ; symbol stub for: printf

 0x55555557838d <+29>: popq %rbp

 0x55555557838e <+30>: movl $0x1, %r10d

 0x555555578394 <+36>: jmp 0x555555574480 ; __xray_FunctionExit

Integration into ClickHouse03

©2026 CLICKHOUSE INC19

Whatʼs ClickHouse
● Fast OLAP DBMS
● Started in 2009 at Yandex.Metrica by Alexey Milovidov
● Open sourced in 2016 under Apache 2.0 license
● Developed in C
● Strong focus in performance
● Lots of dogfooding

○ CI results, observability, pastila, c.house, etc

https://clickhouse.com
https://benchmark.clickhouse.com

https://clickhouse.com/
https://benchmark.clickhouse.com/

©2026 CLICKHOUSE INC20

Integrating XRay into ClickHouse
● Use XRayʼs instrumentation to have negligible

overhead in production when disabled
● Use XRayʼs runtime library to enable in

production only the symbols we want to
instrument

● Use SQL statements to enable/disable
instrumentation points at runtime

● Kudos to our intern Alina Badakhova for doing
the POC to prove it was feasible

https://github.com/ClickHouse/ClickHouse/issues/74249

https://github.com/ClickHouse/ClickHouse/issues/74249

©2026 CLICKHOUSE INC21

Integrating XRay into ClickHouse

● Landed in ClickHouse 25.12 December 25

● Minor improvements since then, all
backported

https://github.com/ClickHouse/ClickHouse/pull/89173

https://github.com/ClickHouse/ClickHouse/pull/89173

©2026 CLICKHOUSE INC22

Hotpatching using SQL Cheatsheet
-- Check symbols to add instrumentation points

SELECT * FROM system.symbols WHERE function_id IS NOT NULL

-- Add or remove instrumentation points

SYSTEM INSTRUMENT [ADD|REMOVE] 'SYMBOL' HANDLER [ENTRY|EXIT] [PARAMS]

-- Check the enabled instrumentation points

SELECT * FROM system.instrumentation

-- Check the instrumented points hit

SELECT * FROM system.trace_log WHERE trace_type = 'Instrumentation'

©2026 CLICKHOUSE INC23

Hotpatching using SQL Inspecting symbols

SET allow_introspection_functions=1

-- Check symbols to add instrumentation points

SELECT

function_id, symbol_demangled

FROM

system.symbols

WHERE

symbol_demangled ILIKE '%QueryMetricLog::start%'

©2026 CLICKHOUSE INC24

Hotpatching using SQL Inspecting symbols
Row 1:

──────

function_id: 202915

symbol_demangled: DB::QueryMetricLog::startQuery(std::__1::basic_string<char,
std::__1::char_traits<char>, std::__1::allocator<char>> const&,
std::__1::chrono::time_point<std::__1::chrono::system_clock,
std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000l>>>, unsigned long)

Row 2:

──────

function_id: 202933

symbol_demangled: void std::__1::__function::__policy_func<void
()>::__call_func[abi:ne210105]<DB::QueryMetricLog::startQuery(std::__1::basic_string<char,
std::__1::char_traits<char>, std::__1::allocator<char>> const&,
std::__1::chrono::time_point<std::__1::chrono::system_clock, std::__1::chrono::duration<long
long, std::__1::ratio<1l, 1000000l>>>, unsigned
long)::$_0>(std::__1::__function::__policy_storage const*)

©2026 CLICKHOUSE INC25

Hotpatching using SQL Adding instrumentation

-- Add a log with stacktrace at function entry

SYSTEM INSTRUMENT ADD 'QueryMetricLog::startQuery' LOG ENTRY 'FOSDEM 26';

-- Add a random sleep [0, 0.5] secs at function exit

SYSTEM INSTRUMENT ADD 'QueryMetricLog::startQuery' SLEEP EXIT 0 0.5;

-- Profile deterministically

SYSTEM INSTRUMENT ADD 'QueryMetricLog::startQuery' PROFILE;

©2026 CLICKHOUSE INC26

Hotpatching using SQL Adding instrumentation
SELECT * FROM system.instrumentation

Row 1:
──────
id: 0
function_id: 202915
function_name: QueryMetricLog::startQuery
handler: log
entry_type: Entry
symbol: DB::QueryMetricLog::startQuery(std::__1::basic_string<char,
std::__1::char_traits<char>, std::__1::allocator<char>> const&,
std::__1::chrono::time_point<std::__1::chrono::system_clock,
std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000l>>>,
unsigned long)
parameters: ['FOSDEM 26']

©2026 CLICKHOUSE INC27

Hotpatching using SQL Adding instrumentation
Row 2:
──────
id: 1
function_id: 202915
function_name: QueryMetricLog::startQuery
handler: sleep
entry_type: Exit
symbol:
DB::QueryMetricLog::startQuery(std::__1::basic_string<char,
std::__1::char_traits<char>, std::__1::allocator<char>> const&,
std::__1::chrono::time_point<std::__1::chrono::system_clock,
std::__1::chrono::duration<long long, std::__1::ratio<1l,
1000000l>>>, unsigned long)
parameters: [0,0.5]

©2026 CLICKHOUSE INC28

Hotpatching using SQL Adding instrumentation
Row 3:
──────
id: 2
function_id: 202915
function_name: QueryMetricLog::startQuery
handler: profile
entry_type: EntryAndExit
symbol:
DB::QueryMetricLog::startQuery(std::__1::basic_string<char,
std::__1::char_traits<char>, std::__1::allocator<char>> const&,
std::__1::chrono::time_point<std::__1::chrono::system_clock,
std::__1::chrono::duration<long long, std::__1::ratio<1l,
1000000l>>>, unsigned long)
parameters: []

©2026 CLICKHOUSE INC29

Hotpatching using SQL Removing
instrumentation

-- Remove all instrumented points

SYSTEM INSTRUMENT REMOVE ALL;

-- Remove a specific instrumented point with id 2

SYSTEM INSTRUMENT REMOVE 2;

-- Remove all entry points for function 'QueryMetricLog::startQuery'

SYSTEM INSTRUMENT REMOVE 'QueryMetricLog::startQuery';

©2026 CLICKHOUSE INC30

Hotpatching using SQL Checking trace_log

SELECT

 event_time_microseconds,

 function_id,

 function_name,

 handler,

 entry_type,

 duration_nanoseconds
FROM system.trace_log

WHERE trace_type = 'Instrumentation'

©2026 CLICKHOUSE INC31

Hotpatching using SQL Checking trace_log

Row 1:
──────
event_time_microseconds: 2026-01-29 11:55:20.553718
function_id: 202915
function_name:
DB::QueryMetricLog::startQuery(std::__1::basic_string<char,
std::__1::char_traits<char>, std::__1::allocator<char>> const&,
std::__1::chrono::time_point<std::__1::chrono::system_clock,
std::__1::chrono::duration<long long, std::__1::ratio<1l,
1000000l>>>, unsigned long)
handler: profile
entry_type: Entry
duration_nanoseconds: ᴸᴸᴸᴸ

©2026 CLICKHOUSE INC32

Hotpatching using SQL Checking trace_log

Row 2:
──────
event_time_microseconds: 2026-01-29 11:55:20.553758
function_id: 202915
function_name:
DB::QueryMetricLog::startQuery(std::__1::basic_string<char,
std::__1::char_traits<char>, std::__1::allocator<char>> const&,
std::__1::chrono::time_point<std::__1::chrono::system_clock,
std::__1::chrono::duration<long long, std::__1::ratio<1l,
1000000l>>>, unsigned long)
handler: profile
entry_type: Exit
duration_nanoseconds: 40059

©2026 CLICKHOUSE INC33

Hotpatching using SQL Visualizing the profile
● Use Chromeʼs Trace Event Format with different visualizers

https://docs.google.com/document/d/1CvAClvFfyA5RPhYUmn5OOQtYMH4h6I0nSsKchNAySU/p
review?tab=t.0

[
 {"name": "Asub", "cat": "PERF", "ph": "B", "pid": 22630,
"tid": 22630, "ts": 829},
 {"name": "Asub", "cat": "PERF", "ph": "E", "pid": 22630,
"tid": 22630, "ts": 833}
]

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview?tab=t.0
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview?tab=t.0

©2026 CLICKHOUSE INC34

Hotpatching using SQL Converting the data
WITH traces AS (

 SELECT * FROM system.trace_log

 WHERE event_date >= today() AND trace_type = 'Instrumentation' AND handler = 'profile'

 ORDER BY event_time, entry_type

)

SELECT

 format(

 '{{"traceEvents": [{}\n]}}',

 arrayStringConcat(

 groupArray(

 format(

 '\n{{"name": "{}", "cat": "clickhouse", "ph": "{}", "ts": {}, "pid": 1, "tid": {}, "args": {{"query_id": "{}", "cpu_id": {},
"stack": [{}]}}}},',

 function_name, if(entry_type = 0, 'B', 'E'), timestamp_ns/1000,

 toString(thread_id), query_id, cpu_id,

 arrayStringConcat(arrayMap((x, y) -> concat('"', x, ': ', y, '", '), lines, symbols))

)

)

)

)

FROM traces;

©2026 CLICKHOUSE INC35

Hotpatching using SQL Visualizing in Perfetto

©2026 CLICKHOUSE INC36

Future work

● Add more handlers as we see the need for them

● Add some VM to allow scripting? Wren, Lua

● Educate others that this exists so that they use it. Collect their

feedback

©2026 CLICKHOUSE INC37

Caveats
● Canʼt mix XRay and sanitized builds due to symbols clashing in libclang_rt

● If you mess something with this, you do it big time cause itʼs in production
● Profiling a function doesnʼt profile all functions underneath. Thatʼs very difficult

ld.lld-19: error: duplicate symbol: __sanitizer::internal_allocator()

>>> defined at
sanitizer_allocator.cpp.o:(__sanitizer::internal_allocator()) in
archive
/usr/lib/llvm-19/lib/clang/19/lib/linux/libclang_rt.ubsan_standalone-
x86_64.a

>>> defined at
sanitizer_allocator.cpp.o:(.text._ZN11__sanitizer18internal_allocator
Ev+0x0) in archive
/usr/lib/llvm-19/lib/clang/19/lib/linux/libclang_rt.xray-x86_64.a

©2026 CLICKHOUSE INC.38

Connect with ClickHouse

Try ClickHouse for
your use case
● ClickHouse Cloud
● Download open source

Learn
● Academy / certifications

● Blogs / YouTube

Engage with
our community
● Community Slack

● Monthly Community calls

● Meetups / events

We are Hiring. Come
Work with Us!

ClickHouse
Community Dinner

Q&A

All links from the slides

https://c.house/links

https://c.house/links

