Il ClickHouse

Hotpatching ClickHouse in
production with XRay

Pablo Marcos Oltra

FOSDEM 2026

$ whoami

Pablo Marcos Oltra

Software Engineer @ ClickHouse's Core Team
Systems Developer

Passionate about videogame development
Interested in compilers, build systems and

new programming languages

Illl: ClickHouse

Il ClickHouse

Who knows what
hotpatching/hot reloading
is?

ll| ClickHouse

Who knows what LLVM's
XRay is?

Il ClickHouse

Who's had to debug something in
production and wished they had

added an extra log to know what's
happening?

Il ClickHouse

m What is hotpatching

Hotpatching: The basics

e Change the code while the process is running
e Allows faster iteration
e Often done in videogame development

o Hot reloading rather than hotpatching

o Client-server architecture where the lightweight client loads a new version of the
game (in a shared library)

o Examples

m http://runtimecompiledcplusplus.blogspot.com.es

m https://fungos.github.io/cr-simple-c-hot-reload

m https://liveplusplus.tech

Illl: ClickHouse

http://runtimecompiledcplusplus.blogspot.com.es/
https://fungos.github.io/cr-simple-c-hot-reload/
https://liveplusplus.tech/

Hotpatching: Adding instrumentation

e -finstrument-functions : Generates instrumentation code for every function entry/exit

void cyg profile func enter(void *this fn, void *call site);

void cyg profile func exit(void *this fn, void *call site);

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.htmi#index-finstrument-functions

Illl: ClickHouse

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-finstrument-functions

Hotpatching: Adding instrumentation

e -fpatchable-function-entry=N[,M]: -fpatchable-function-entry=5,2

Generate M NOPs before function entry
and N-M NOPs after function entry patchable_function_entrie HaF R

points here -
] before label

NOP
func: —
NOP
N-M = 3 NOPs
Lol T after label
NOP

function prologue
& body. ..

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.htmi#index-fpatchable-function-entry

Illl: ClickHouse

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-fpatchable-function-entry

Il ClickHouse

oz

XRay

XRay consists of three main parts:
1. Compiler-inserted instrumentation points.
2. Aruntime library for enabling/disabling tracing at runtime.

3. A suite of tools for analysing the traces.

As of July 25, 2018, XRay is only available for the following architectures running Linux:

x86_64, arm7 (no thumb), aarch64, powerpc64le, mips, mipsel, mips64, mips64el, NetBSD: x86_64,
FreeBSD: x86_64 and OpenBSD: x86_64.

https://llvm.org/docs/XRay.html

Illl: ClickHouse

https://llvm.org/docs/XRay.html

XRay: Example

int main()

{

__Xray_init(Q);
__xray_patch();
__xray_set_handler(my_handler);

foo();

__xray_remove_handler();
__xray_unpatch();

peturn 0;

Illl: ClickHouse

XRay: Example

de <stdint.h>
lude <stdio.h>
clude <xray/xray_interface.h>

[[clang:: xray_never_instrument]] void my_handler(int32_t fid, XRayEntryType type)

*
printf("FuncID: %d, Type: %d\n", fid, type);

}.

void foo()

£
printf("Fool\n");

}.

Illl: ClickHouse

XRay: Example

$ clang++ -o test xray test xray.cpp -fxray-instrument
—-fxray-instruction-threshold=1

$./test xray
FuncID: 1, Type: O
Foo!

FuncID: 1, Type: 1

Illl: ClickHouse

XRay: xray_instr_map

$ objdump -h -j xray instr map test xray

test xray: file format elf64-x86-64
Sections:
Idx Name Size VMA LMA File off Algn

17 xray instr map 00000080 000000000002c6c4 000000000002c6cd4 0002coc4
2**0

CONTENTS, ALLOC, LOAD, READONLY, DATA

Illl: ClickHouse

XRay: Before patching foo

$ (1lldb) dis -C 10

test xray foo:

-> 0x555555578360 <+0>:
0x555555578362 <+2>:

0x55555557836b <+11>:
0x55555557836¢c <+12>:
0x55555557836f <+15>:
0x555555578376 <+22>:
0x555555578378 <+24>:
0x55555557837d <+29>:
0x55555557837e <+30>:
0x55555557837f <+31>:

Jmp
nopw
pushqg
movq
leaqg
movb
callqg
popqg
retq

nopw

entry sled

0x55555557836b ; <+11>

0x200 (%$rax, $rax)

Srbp

srsp, Srbp

0x8348 (%rip), %rdi

S0x0, %al

0x555555556040 ; symbol stub for: printf
Srbp

%$cs:0x200 (%$rax, $rax)

— exit sled

Illl: ClickHouse

XRay: After patching foo

$ (1ldb) dis -C 10

test xray foo:

-> 0x555555578370
0x555555578376
0x55555557837b
0x55555557837¢
0x55555557837f
0555555578386
0x555555578388
0x55555557838d
0x55555557838e
0x555555578394

<+0>:
<+6>:

<+11>:
<+12>:
<+15>:
<+22>:
<+24>:
<+29>:
<+30>:
<+36>:

movl
callqg
pushqg
movqg
leaqg
movb
callqg
popqg
movl

jmp

$0x1, %rlod
0x555555574340 ; _ xray FunctionEntry

Qo

srbp

S0x0, %al

0x555555556040 ; symbol stub for: printf
Srbp

$0x1, %rlod

0x555555574480 ; _ xray FunctionExit

Illl: ClickHouse

Il ClickHouse

m Integration into ClickHouse

What's ClickHouse

e Fast OLAP DBMS

e Started in 2009 at Yandex.Metrica by Alexey Milovidov
e Open sourced in 2016 under Apache 2.0 license

e Developedin C++

e Strong focus in performance

e Lots of dogfooding

o Clresults, observability, pastila, c.house, etc

https://clickhouse.com

https://benchmark.clickhouse.com

Illl: ClickHouse

https://clickhouse.com/
https://benchmark.clickhouse.com/

Integrating XRay into ClickHouse

e Use XRay's instrumentation to have negligible
overhead in production when disabled

e Use XRay'’s runtime library to enable in
production only the symbols we want to
instrument

o Use SQL statements to enable/disable
instrumentation points at runtime

e Kudos to our intern Alina Badakhova for doing
the POC to prove it was feasible

https://github.com/ClickHouse/ClickHouse/issues/74249

Illl: ClickHouse

https://github.com/ClickHouse/ClickHouse/issues/74249

Integrating XRay into ClickHouse

e Landed in ClickHouse 2512 (December 25) E

e Minor improvements since then, all
backported

https://qithub.com/ClickHouse/ClickHouse/pull/89173

Illl: ClickHouse

https://github.com/ClickHouse/ClickHouse/pull/89173

Hotpatching using SQL: Cheatsheet

—-— Check symbols to add instrumentation points

SELECT * FROM system.symbols WHERE function_ id IS NOT NULL

-- Add or remove instrumentation points

SYSTEM INSTRUMENT [ADD|REMOVE] 'SYMBOL' HANDLER [ENTRY |EXIT] [PARAMS]

-— Check the enabled instrumentation points

SELECT * FROM system.instrumentation

—-— Check the instrumented points hit
SELECT * FROM system.trace log WHERE trace_type = 'Instrumentation'

Illl: ClickHouse

Hotpatching using SQL: Inspecting symbols

SET allow introspection functions=1

—-— Check symbols to add instrumentation points
SELECT
function id, symbol demangled
FROM
system. symbols
WHERE
symbol demangled ILIKE 'S%QueryMetricLog::start$%'

Illl: ClickHouse

Hotpatching using SQL: Inspecting symbols

Row 1:

function id: 202915

symbol demangled: DB::QueryMetricLog::startQuery(std:: 1::basic_string<char,
std:: 1l::char traits<char>, std::_ 1l::allocator<char>> constg,

std:: 1::chrono::time point<std:: 1::chrono::system clock,

std:: 1::chrono::duration<long long, std::__l::ratiole, 10000001>>>, unsigned long)

Row 2:

function id: 202933

symbol demangled: void std:: 1:: function:: policy func<void

()>:: call func[abi:ne210105]<DB::QueryMetriclLog::startQuery (std:: 1::basic string<char,
std:: 1l::char traits<char>, std:: 1::allocator<char>> constg,

std:: 1::chrono::time point<std:: 1::chrono::system clock, std:: 1::chrono::duration<long
long, std:: 1::ratio<ll, 10000001>>>, unsigned

long)::$ 0>(std:: 1:: function:: policy storage const*)

Illl: ClickHouse

Hotpatching using SQL: Adding instrumentation
-- Add a log with stacktrace at function entry
SYSTEM INSTRUMENT ADD 'QueryMetricLog::startQuery' LOG ENTRY 'FOSDEM 26';

-—- Add a random sleep [0, 0.5] secs at function exit

SYSTEM INSTRUMENT ADD 'QueryMetricLog::startQuery' SLEEP EXIT 0 0.5;

-— Profile deterministically

SYSTEM INSTRUMENT ADD 'QueryMetricLog::startQuery' PROFILE;

Illl: ClickHouse

Hotpatching using SQL: Adding instrumentation

SELECT * FROM system.instrumentation
Row 1:
id: 0

function id: 202915

function name: QueryMetricLog::startQuery

handler: log

entry type: Entry

symbol : DB: :QueryMetricLog: :startQuery(std:: 1::basic string<char,
std:: 1l::char traits<char>, std:: 1l::allocator<char>> constg,

std:: 1l::chrono::time point<std:: 1::chrono::system clock,

std:: 1::chrono::duration<long long, std:: 1::ratio<ll, 10000001>>>,
unsigned long)

parameters: ['FOSDEM 26']

Illl: ClickHouse

Hotpatching using SQL: Adding instrumentation

Row 2:

id: 1

function id: 202915

function name: QueryMetriclLog::startQuery

handler: sleep

entry type: Exit

symbol :

DB: :QueryMetricLog: :startQuery(std:: 1::basic string<char,
std:: 1::char traits<char>, std:: 1::allocator<char>> constég,
std:: 1l::chrono::time point<std:: 1::chrono::system clock,
std:: 1l::chrono::duration<long long, std:: 1::ratio<ll,
10000001>>>, unsigned long)

parameters: [0,0.5]

Illl: ClickHouse

Hotpatching using SQL: Adding instrumentation

Row 3:

id: 2

function id: 202915

function name: QueryMetriclLog::startQuery

handler: profile

entry type: EntryAndExit

symbol :

DB: :QueryMetricLog: :startQuery(std:: 1::basic string<char,
std:: 1::char traits<char>, std:: 1::allocator<char>> constég,
std:: 1l::chrono::time point<std:: 1::chrono::system clock,
std:: 1l::chrono::duration<long long, std:: 1::ratio<ll,
10000001>>>, unsigned long)

parameters: []

Illl: ClickHouse

Hotpatching using SQL: Removing
instrumentation

-—- Remove all instrumented points

SYSTEM INSTRUMENT REMOVE ALL;

-—- Remove a specific instrumented point with id 2

SYSTEM INSTRUMENT REMOVE 2;

-—- Remove all entry points for function 'QueryMetricLog::startQuery'

SYSTEM INSTRUMENT REMOVE 'QueryMetricLog::startQuery';

Illl: ClickHouse

Hotpatching using SQL: Checking trace_log

SELECT
event time microseconds,
function id,
function name,
handler,
entry type,

duration_nanoseconds
FROM system.trace log

WHERE trace_ type = 'Instrumentation'

Illl: ClickHouse

Hotpatching using SQL: Checking trace_log

Row 1:

event time microseconds: 2026-01-29 11:55:20.553718

function id: 202915

function name:

DB: :QueryMetricLog: :startQuery(std:: 1::basic string<char,
std:: 1::char traits<char>, std:: 1::allocator<char>> constég,
std:: 1::chrono::time point<std:: 1::chrono::system clock,
std:: 1l::chrono::duration<long long, std:: 1::ratio<ll,
10000001>>>, unsigned long)

handler: profile

entry type: Entry

duration nanoseconds: Ho00

Illl: ClickHouse

Hotpatching using SQL: Checking trace_log

Row 2:

event time microseconds: 2026-01-29 11:55:20.553758

function id: 202915

function name:

DB: :QueryMetricLog: :startQuery(std:: 1::basic string<char,
std:: 1::char traits<char>, std:: 1::allocator<char>> constég,
std:: 1::chrono::time point<std:: 1::chrono::system clock,
std:: 1l::chrono::duration<long long, std:: 1::ratio<ll,
10000001>>>, unsigned long)

handler: profile

entry type: Exit

duration nanoseconds: 40059

Illl: ClickHouse

Hotpatching using SQL: Visualizing the profile

e Use Chrome's Trace Event Format with different visualizers

[

{"name": "Asub", "Cat": "PERF", "ph": "B"’ "pid": 22630,
"tid": 22630, "ts": 829},
{"name": "Asub", "cat": "PERF", "ph": "E", "pid": 22630,

"tid": 22630, "ts": 833}
]

https://docs.google.com/document/d/1CvACIVEfYASR-PhYUmn500QtYMH4h610nSsKchNAySU/p
review?tab=t.0

Illl: ClickHouse

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview?tab=t.0
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview?tab=t.0

Hotpatching using SQL: Converting the data

WITH traces AS (
SELECT * FROM system.trace_log
WHERE event_date >= today() AND trace_type = 'Instrumentation' AND handler = 'profile'
ORDER BY event_time, entry type
)
SELECT
format (
'{{"traceEvents": [{}\n]l}}',
arrayStringConcat (
groupArray (

format (

"\n{{"name": "{}", "cat": "clickhouse", "ph": "{}", "ts": {}, "pid": 1, "tid": {}, "args": {{"query id":

"stack": [{}]1}}}}, ",
function_name, if(entry type = 0, 'B', 'E'), timestamp_ns/1000,
toString(thread id), query id, cpu_id,

arrayStringConcat (arrayMap ((x, y) -> concat('"', x, ': ', y, '"", '), lines, symbols)

)

FROM traces;

niyn,

"cpu_id":

{1,

Illl: ClickHouse

otpatching usin

X S Y & Default Workspace

Thread 86354
Thread 86355
Thread 86357
Thread 86358
Thread 86359
Thread 86360
Thread 86361
Thread 86362
Thread 86364
Thread 86365
Thread 86367
Thread 86368
Thread 86371
Thread 86372
Thread 86374
Thread 86375
Thread 86377

Thrand 06270

Current Selection

Slice sleepForNanoseconds(unsigned long)

Details

Name
Category
Start time
~ Duration
Thread
Process
SQLID

sleepForNanoseconds(unsigned long)

clickhouse
944,253 ms
966.091 ms

86367

1

slice[116] -

L:

isualizing in

——vob.U31 ms ——

sleepForNanoseconds...
sleepForNa...
sleepForN...

sleepForNanosec...

sleepForNano...
sleepForNano..

sleepForNanoseco...
sleepForNanosec..

sleepForNanosecon
sl |
st

sleepForNanosec...

sleepForNanose... sleey

8
3
=

(e]
|]

m sleepFo... sleepForNanose...

sleepForNanosecond... sleepForN...

sleepForNanos... sleepForNan... | sleep.. | [sl..|
m “ sleepForNano...
[
: sleepForNanos...

| sleepForNanosecon...

m sleepForNanosec...
sepront o=

sleepForNanoseco...
sleepForNanose...

Perfetto

sleepForNanose...

T v

sleepForNanos: sleepForNanosecon...
- ST o
Contextual Options ~
Arguments
v args
query_id - 898d0816-f67b-4d48-9cf6-fc8a969993¢1
cpuid - 4
v stack
[o] - /home/ubuntu/ClickHouse/ClickHouse/build lickh
StackTrace::StackTrace()
[1 - /home/ubuntu/ClickHouse/ClickHouse/build/pi lickh
i:createTraceLogEl DB:

B::
‘InstrumentedPointinfo const&, XRayEntryType,

:chrono::time_point<std::__1::chrono::system_clock,
:chrono::duration<long long, std::__1::ratio<1l, 1000000I>>>) const

(. h h PlinkL linb Lt Jhuild linbh,

Illl: ClickHouse

Future work

e Add more handlers as we see the need for them
e Add some VM to allow scripting? Wren, Lua

e Educate others that this exists so that they use it. Collect their
feedback

Illl: ClickHouse

Caveats

Can’t mix XRay and sanitized builds due to symbols clashing in libclang_rt

1d.11d-19: error: duplicate symbol: sanitizer::internal allocator()
>>> defined at

sanitizer allocator.cpp.o:(sanitizer::internal allocator()) in
archive

/usr/lib/1lvm-19/1ib/clang/19/1ib/linux/libclang rt.ubsan standalone-
x86 64.a

>>> defined at

sanitizer allocator.cpp.o: (.text. ZN1ll sanitizerl8internal allocator
Ev+0x0) 1in archive
/usr/lib/1lvm-19/1ib/clang/19/1ib/linux/libclang rt.xray-x86 64.a

If you mess something with this, you do it big time cause it's in production
Profiling a function doesn't profile all functions underneath. That's very difficult

Illl: ClickHouse

Il ClickHouse

Connect with ClickHouse

ClickHouse
Community Dinner

Try ClickHouse for
your use case

e ClickHouse Cloud
e Download open source

Learn
e Academy / certifications

e Blogs / YouTube

Engage with

our community

e Community Slack

e Monthly Community calls

e Meetups / events

We are Hiring. Come
Work with Us!

Illl: ClickHouse

II"- ClickHouse All links from the slides

E'.

Q&A

https://c.house/links

https://c.house/links

