ClickHouse Practice and Contributions
-- from academy to industry

£BAR#H &+, Amos Bird (Ph.D), zhengtiangi@kuaishou.com

08

LI

About me

* Active ClickHouse Contributor
* 200 + valid PRs
* ~40 Stack Overflow Answers
* Doing some code reviews occasionally https://github.com/amosbird

* Graduated from ICT CAS with a Ph.D degree in database

* Currently @kuaishou Data Platform Department

QOutline

* Back in the school days — scenario exploration

* First entry into the industry — OLAP practice

* Consistent efforts In the open-source fleld — novel features
* Looking into the future — current working items

Back In the school days

Graph SDK

Relational SQL

SQL Interface

Python
Interface Lib

. Shortest
Path

SilverChunk Engine

I
PageRank
' Spiral Pipeline
| Graph Analytics UDTFs P P
Python . ClickHouse .
Interpreter sfolrel I Query Engine SAHA Data Mining UDTFs
P 1
|
Edge Table !
g KV | |
Table ' |
Graph ’ Vertex Table ! |
s Table. 1 Tensor Table
.f‘ I
Data Modeler @ {i /'//// Data Sources |
JSON Parquet |

SQLGraph

ShortestPath

Connnected

Component

Bellmanford

Clique Count

1y every possibilities out of ClickHouse

@Weixin

@Email

103022
103759,
100154
1019

104589 104601

i SQL
v

103759

104412

101912

109298

102672

100871

1 nnnna

(Slele]

FREESER

type +
Weixin
Weixin
Email
QQ
Email

QQ

vy

103584 ‘
106542 307,

103347

. 102321

103421

@ =
106253
R . 102993 101619

106886

pagerank + index %
0.0001264031

0.000085505846

0.000108492764

0.00015456796

0.00010493739

0.00006793883

N AnnnnTcIAaY

Back in the school days (Lessons learned)

* ClickHouse Is very extensible and portable
* A barebone computational framework (/programs)
* A self-contained portable binary (even on Android)
* A rich set of Input/output interfaces and formats (omnipotent)

* ClickHouse Is friendly to use, and easy to hack
* There are 4 contributors in my lab, some are green hands
* The system Is understandable from top to bottom

* ClickHouse can solve real problems

Back in the school days (Lessons learned)

* ClickHouse Is very extensible and portable
* A barebone computational framework (/programs)
* A self-contained portable binary (even on Android)

* Arich set of “If some system works a little faster than tent)
ClickHouse on some degenerate query, this
* ClickHouse is means that | have not yet optimized the code,
* There are 4 and I will do it tomorrow.” — Alexey Milovidov s
* The system Is understandable from top to bottom

* ClickHouse can solve real problems

First entry into the industry

* @kuaishou for ~100 days now

* Interesting setups
* Multiple clusters with a proxy service portal
* Frontend of ClickHouse management
* ETL pipelines from Hive and Kafka
* Two kinds of ClickHouse clusters

* Demanding Issues
* HW RAID crash and IO inefficiency
* Query optimization (mostly indices)
* Resource management

Full picture of our ClickHouse service

. Proxy Query W,
. <«—>
Serwce Service My
Grafana I

¢ M|II|ons of queries

per day
Monl_tor <—> Cluster 1 Cluster 2 ... | Cluster N <—> Admin
Service E i :
5 Service
_____________________________ Around thousands of machines
1 ETL Service
"' OPEN Tens of petabytes

ﬂ & kafka.

~=HIVE

Full picture of our ClickHouse service

e Proxy Query
Service Service
Grafana

¢ Some use cases:
1. AB testing
. : . :
Sonl_tor <«» 2- Domain specific analysis > | Admin
ervice .
: o Service
3. Perf metric monitoring
I L
ETL Service
" OPEN Tens of petabytes

[

ﬂ & kafka.

IVE

Full picture of our ClickHouse service

i

Grafana

}

Monitor
Service

|
tars OPEN
| |

= G (2] -
. Service Service

ETL Service manages mainly two kinds of data
loading processes:

1. HiveQL + MapReduce to load data from
hive periodically (pre-generated parts)

2. Flink job to consume data from kafka and

directly insert into ClickHouse
L

ETL Service

ﬂ & kafka.

IVE

[

I\/Iym

!

Admin
Service

Full picture of our ClickHouse service

Pro>.<y Que.ry m
c Service Service My
rafana I
N

I\/Ionl_tor <—> Cluster 1 Cluster 2 ... | Cluster N 5<-> Admin
Service i i :
Service
Multiple isolated clusters of ClickHouse to
I serve either general or special applications.
S22 OPen There are mainly two kinds of clusters:

1. Vanilla ClickHouse (general and realtime)

2. ClickHouse on HDFS (huge static datasets)

Full picture of our ClickHouse service

Grafana

}

Monitor
Service

-1 g OPEN

> Proxy Query
Service Service

T

Homemade query proxy with a dedicated

understand queries.

ClickHouse instance (query service) to help

Proxy service provides following features:
1. Unify query endpoints with query cache

2. Audit/Control users and queries

g 3. Auto-routing based on table or query

predicates

4. Global view of all tables” metadata

Full picture of our ClickHouse service

i

Grafana

}

Monitor
Service

OPEN

CREATE TABLE

DESCRIBE TABLE

SELECT DATA
SOURCE

SETUP ETL

1. Table Priority

2. How much data per day
3. Life time description

4. Expected query latency

R & kafka

IVE

1. Define schema mappings
(automatically inferred)

2. Handle special cases

3. choose primary and
partition keys

AN

My

!

Admin
Service

Full picture of our ClickHouse service

OPERATE TABLE
s AN
My
Grofana 1. Rows/bytes per partition
¢ WL g 2. Schema info
INFORMATION :
Monitor 1. Add/Remove columns _
Servicel] TABLE 2. Remove/lock tables *>| Admin
MANAGEMENT 3. Adjust priority Service
1 ETL 1. Kafka latency check

:::; N MONITORING 2. Hive job schedule check

Full picture of our ClickHouse service

Handmade scripts to collect various metrics

in crontab manner — \
Grafana y
¢ 1. System metrics check, port alive I
check...

2. Zookeeper data size

Monitor

| > i
Service 3. Query concurrency/resource R AL

Service

4. Various memory consumption

I 5. System loads (CPU, 10O, Network)

ERER
tars OPEN
| |

Around 100 Grafana panels in total

ClickHouse on HDFS

ClickHouse ClickHouse
. Cluster
T Y Manager
;@ Query Node Query Node
ClickHouse ClickHouse ClickHouse
HDFS HDFS HDFS
DataNode DataNode DataNode

Worker Node

Worker Node

Worker Node

HDFS NameNode

ETL Service

ClickHouse on HDFS

ClickHouse ClickHouse
Cluster

' Pain points: anager

HW RAID failures and data loss

ClickH 2 Insufficient and inefficient storage House
upr 3- Bloated zookeeper JES
DataNl \Node

4. Inconvenient to scale
Worker Node Worker Node Worker Node

HDFS NameNode ETL Service ﬁ

IVE

1

ClickHouse on HDFS

Hosting data parts on HDFS:

Shardl (bucket_1,2,3...)) Cluster
ClickHouse ClickHouse Manager . '
HDFSMergeTree HDFSMergeTree 1. ETL service generate compact part files

on HDFS, with host affinity based on
the bucket -> shard mapping

a.dat, b.dat, c.dat a.dat, b.dat, c.dat

Hostl Host2 — .
2. Specialized HDFSMergeTree engine to

Part files on HDFS read compact parts from HDFS, usually

via short-circuit read
e ${cluster}/${bucket 1}/${db}/${table}/a.dat (Hostl:Host2)

o ${cluster}/${bucket 2}/${db}/${table}/b.dat (Hostl;Host2) . .
o s{clustery/s{bucket 3}/${db}/s{table}/c.dat (Hostl:Host2) = 3. All the metadata operations are done in

Cluster Manager (DDL, part
attach/move)

HDFS NameNode ETL Service %
Sy IVE

,

Vanilla ClickHouse (Before)

ClickHouse

Query Node

ClickHouse
ReplicatedMergeTree
19.5.5

HW RAID10

Worker
Node

Zookeeper ClickHouse
Query Node
ClickHouse ClickHouse
ReplicatedMergeTree ReplicatedMergeTree
19.5.5 19.5.5
HW RAID10 HW RAID10
= s Worker = - Worker
Node Node
§3 kafka. |:> ETL Service

Vanilla ClickHouse (Pain points recap)

Zookeeper ClickHouse ClickHouse
Query Node Query Node
1. Mysterious read only tables
e ClickHouse ClickHouse
2. BeD?_d locks in distributed ReplicatedMergeTree ReplicatedMergeTree
I 19.5.5 19.5.5
HW RAID10 HW RAID10 N h d I"“ o
RRRRR " Worker o e \Worker o0 hard limit on memory, can
%%%% Node EEEE Node be OOM killed

Hardware limitation (HW RAID
random crash with potential
data loss, no new RAID
machines, disk space shortage)

ETL Service

(

@

IVE

Vanilla ClickHouse (After)

ClickHouse

Query Node

ClickHouse
ReplicatedMergeTree
20.8.1

JBOD

T L e B
E A e B

Worker
Node

Zookeeper ClickHouse
Query Node
ClickHouse ClickHouse
ReplicatedMergeTree ReplicatedMergeTree
20.8.1 20.8.1
Worker Worker
Node Node
§3 kafka. |:> ETL Service

Things we learned In rolling upgrade

* Disable DDL operations or else ReplicatedMergeTree would be stuck at
some unrecognizable entry and data insertion will eventually stop

* Do not allow new instances to be leader, or else the new instances
assign merges aggressively and the old instances might OOM. Also
need to disable /ndex granularity bytes and write final mark

* Bonus point: Prepare to recovery data files _ 2
from broken marks (kudos to Alexey)

* Distributed queries should be sent to new Instances to get correct
results

Things we did after using JBOD

* Automatically recover parts when some disk I1s broken
* Diagnose bad |0 utilization and tune disk settings

* Observe read clustering and tail latency issue, solved by balanced
JBOD read

* Balance query related data files over JBOD array (WIP)

JBOD disk auto-recovery

Each local disk spawns a disk checker thread, which gives three states: broken,

Disk checker will automatically transit disks from thy to broken or broken to
. One need to create a .recover file in the disk path to bring INto
(avoid flaky disks)

Each ReplicatedMergeTree table constantly checks if a part is on an un disk
and starts to recover all related parts.

Whenever a query scans a broken part, it starts to recover instantly.

https://github.com/ClickHouse/ClickHouse/pull/13544

Some test results of JBOD

* Disk read-ahead tuning benchmark using long running queries

max_sectors_kb

256 512 1024 2048
400
(4]
@
Z 200 .
E
100
o-
A096 B192 16383
400
— 300
g
T 200
E
F 100 -
I:] T T T T T T T T T T T T T T T T
o NV o B o gL o B o AV o W o L o & o Wb gk B go b ok & o b gk @ ol oh B
VOO @) RN Sty VTS S & g VTS S R Y)
read_ahead_kb read_ahead_kb

read_ahead_kb read_ahead_kb

Some test results of JBOD

* Disk read-ahead tuning benchmark using long running queries

More than 100% improvement

600 —

&)

o

o
|

i

o

o
|

200+

Query Duration (seconds)
g
o
1

128 1024 8192 16384
Read-ahead

Balanced read among JBOD disks

* Avoid read clustering and tall latency

Significant improvements, more than 400%
600 -

500

200

Query Duration (seconds)
3
o

backoff-steal baseline presplit-task random-steal
Reading Scheme

https://github.com/ClickHouse/ClickHouse/pull/16423

Balanced data among JBOD disks (WIP)

. Fodcus)ed on long running queries targeting for given partitions (usually
a day

* Lower max bytes to merge _at max space_in_pool/to have smaller but
more parts (hopefully gets better balanced)

* Currently balance via ALTER PART MOVE In crontab manner

* Eventually will have automatic part balancer over JBOD array

https://github.com/ClickHouse/ClickHouse/pull/16481

Nullable primary key

* Almost 99% of columns are Nullable in production

* Nulls are default to be greater than any other values. It’s trivial to allow
Nullable types appearing in the primary key expression, but a bit tricky
to have index condition work correctly.

* We introduce '-inf" and "+inf’ as two value sentinels and let Null = +inf.
Index processing Is extended to handle these sentinels.

https://github.com/ClickHouse/ClickHouse/pull/12455

Index usage optimization (Monotonicity)

* toDate Is not satuerated
* toDate will not work when a part doesn’t have a final mark (+Inf)

* toDate might not work when a part’s primary key range outside one monotonic
Interval

* Binary operator with a constant argument (notably division)

* Now we can have tobate(timestamp _ms / 1000) work as index column

https://github.com/ClickHouse/ClickHouse/pull/13497
https://github.com/ClickHouse/ClickHouse/pull/14513

Partition predicates optimization

* Prune partition in verbatim way

* Partition expressions can be wrapped In non-monotonic functions, such as
hashing and modulo.

* We use the invariant: Partition value is fixed in each part, and filter parts with
that value and given predicates.

* Instant count() with partition predicates

* We use similar technology to select parts that are always true and filter parts
that are always false. When there is nothing left, we return the count

https://github.com/ClickHouse/ClickHouse/pull/16253
https://github.com/ClickHouse/ClickHouse/pull/15074

Consistent efforts in the open-source field

* Column transformers
* untuple (feat. Nikolal)
* CTE and global with
* protobuf format schema via HDFS

* View function
* Fetch partitions from another cluster
* clickhouse-client Introspection usability

Column transtformers

* |dea Is originated from Big Query and suggested by Alexey

* Three kinds of column matchers: « *, table.* and COLUMNS(<regexp>)”
are extended to do column transformations

https://github.com/ClickHouse/ClickHouse/pull/14233

Column transtformers

* Some examples

SELECT * APPLY(sum) SELECT columns_transformers.* EXCEPT(j) APPLY(avg)
FROM columns_transformers FROM columns transformers

sum(i)——sum(j)——sum(k)

avg(i)—avg(k)
220 18 347 110 | 173.

SELECT columns_transformers.* REPLACE(j + 2 AS j, 1 + 1 AS 1) APPLY(avg)
FROM columns_transformers

avg(plus(i, 1))—avg(plus(j, 2))——avg(k)
111 11 173.

Column transtformers

* Useful for INSERT SELECT

INSERT INTO insert_select_dst(* EXCEPT (middle_a, middle_b)) SELECT = FROM insert_select_src

* Schema transformers?

INSERT INTO table SELECT = FROM file("./table/*",/CSV’, schema(table EXCEPT -+))

* Some discussion https://github.com/ClickHouse/ClickHouse/issues/16295

untuple (feat. Nikolal)

* The missing feature of named tuples.

SELECT

untuple(argMax(tuple(* EXCEPT(key)), v1))

q
3
=
2
5
1
6
7
8

https://github.com/ClickHouse/ClickHouse/pull/16242

CTE (common table expression)

* ClickHouse has exotic support of the WITH statement. It's used to
Introduce scalar aliases into the guery context.

* WITH 1 AS 3, (select * from table) AS b SELECT -

* Sometimes we need to have named subqgueries introduced as
table objects (not scalars). The syntax Is consistent with standard.

* WITH s AS (select = from table) SELECT * from s

https://github.com/ClickHouse/ClickHouse/pull/14771

Near future in kuaishou

* Projections
* Consistent materialized views at part level

* External table powered by elastic search
* Used to serve updates and full text search

* Resource management

(QJA

Thank You!

