
ClickHouse Practice and Contributions

-- from academy to industry

郑天祺 博士, Amos Bird (Ph.D)，zhengtianqi@kuaishou.com

About me

• Active ClickHouse Contributor
• 200 + valid PRs
• ~40 Stack Overflow Answers
• Doing some code reviews occasionally

• Graduated from ICT CAS with a Ph.D degree in database

• Currently @kuaishou Data Platform Department

https://github.com/amosbird

Outline

• Back in the school days – scenario exploration

• First entry into the industry – OLAP practice

• Consistent efforts in the open-source field – novel features

• Looking into the future – current working items

Back in the school days

• Try every possibilities out of ClickHouse

Back in the school days (Lessons learned)

• ClickHouse is very extensible and portable
• A barebone computational framework (/programs)
• A self-contained portable binary (even on Android)
• A rich set of input/output interfaces and formats (omnipotent)

• ClickHouse is friendly to use, and easy to hack
• There are 4 contributors in my lab, some are green hands
• The system is understandable from top to bottom

• ClickHouse can solve real problems

Back in the school days (Lessons learned)

• ClickHouse is very extensible and portable
• A barebone computational framework (/programs)
• A self-contained portable binary (even on Android)
• A rich set of input/output interfaces and formats (omnipotent)

• ClickHouse is friendly to use, and easy to hack
• There are 4 contributors in my lab, some are green hands
• The system is understandable from top to bottom

• ClickHouse can solve real problems

“If some system works a little faster than
ClickHouse on some degenerate query, this
means that I have not yet optimized the code,
and I will do it tomorrow.” – Alexey Milovidov

First entry into the industry

• @kuaishou for ~100 days now

• Interesting setups
• Multiple clusters with a proxy service portal
• Frontend of ClickHouse management
• ETL pipelines from Hive and Kafka
• Two kinds of ClickHouse clusters

• Demanding issues
• HW RAID crash and IO inefficiency
• Query optimization (mostly indices)
• Resource management

Full picture of our ClickHouse service

Proxy

Service

Cluster 1 Cluster 2 Cluster N Admin

Service

Query

Service

Monitor

Service

ETL Service

Tens of petabytes

Millions of queries
per day

Around thousands of machines

Full picture of our ClickHouse service

Proxy

Service

Cluster 1 Cluster 2 Cluster N Admin

Service

Query

Service

Monitor

Service

ETL Service

Tens of petabytes

Millions of queries
per day

Some use cases:

1. AB testing

2. Domain specific analysis

3. Perf metric monitoring

Full picture of our ClickHouse service

Proxy

Service

Cluster 1 Cluster 2 Cluster N Admin

Service

Query

Service

Monitor

Service

ETL Service

ETL Service manages mainly two kinds of data
loading processes:

1. HiveQL + MapReduce to load data from
hive periodically (pre-generated parts)

2. Flink job to consume data from kafka and
directly insert into ClickHouse

Full picture of our ClickHouse service

Proxy

Service

Cluster 1 Cluster 2 Cluster N Admin

Service

Query

Service

Monitor

Service

ETL Service

Multiple isolated clusters of ClickHouse to
serve either general or special applications.

There are mainly two kinds of clusters:

1. Vanilla ClickHouse (general and realtime)

2. ClickHouse on HDFS (huge static datasets)

Full picture of our ClickHouse service

Proxy

Service

Cluster 1 Cluster 2 Cluster N Admin

Service

Query

Service

Monitor

Service

ETL Service

Homemade query proxy with a dedicated
ClickHouse instance (query service) to help
understand queries.

Proxy service provides following features:

1. Unify query endpoints with query cache

2. Audit/Control users and queries

3. Auto-routing based on table or query
predicates

4. Global view of all tables’ metadata

Full picture of our ClickHouse service

Proxy

Service

Cluster 1 Cluster 2 Cluster N Admin

Service

Query

Service

Monitor

Service

ETL Service

Full picture of our ClickHouse service

Proxy

Service

Cluster 1 Cluster 2 Cluster N Admin

Service

Query

Service

Monitor

Service

ETL Service

Full picture of our ClickHouse service

Proxy

Service

Cluster 1 Cluster 2 Cluster N Admin

Service

Query

Service

Monitor

Service

ETL Service

Handmade scripts to collect various metrics
in crontab manner

1. System metrics check, port alive
check…

2. Zookeeper data size

3. Query concurrency/resource

4. Various memory consumption

5. System loads (CPU, IO, Network)

…

Around 100 Grafana panels in total

ClickHouse on HDFS

ClickHouse

HDFS
DataNode

Worker Node

HDFS NameNode

Cluster
Manager

Query Node

ClickHouse

Query Node

ClickHouse

ClickHouse

HDFS
DataNode

Worker Node

ClickHouse

HDFS
DataNode

Worker Node

...

...

ETL Service

ClickHouse on HDFS

ClickHouse

HDFS
DataNode

Worker Node

HDFS NameNode

Cluster
Manager

Query Node

ClickHouse

Query Node

ClickHouse

ClickHouse

HDFS
DataNode

Worker Node

ClickHouse

HDFS
DataNode

Worker Node

...

...

ETL Service

Pain points:

1. HW RAID failures and data loss

2. Insufficient and inefficient storage

3. Bloated zookeeper

4. Inconvenient to scale

ClickHouse on HDFS

ClickHouse

HDFS
DataNode

Worker Node

HDFS NameNode

Cluster
Manager

Query Node

ClickHouse

Query Node

ClickHouse

ClickHouse

HDFS
DataNode

Worker Node

ClickHouse

HDFS
DataNode

Worker Node

...

...

ETL Service

Hosting data parts on HDFS:

1. ETL service generate compact part files
on HDFS, with host affinity based on
the bucket -> shard mapping

2. Specialized HDFSMergeTree engine to
read compact parts from HDFS, usually
via short-circuit read

3. All the metadata operations are done in
Cluster Manager (DDL, part
attach/move)

Vanilla ClickHouse (Before)

ClickHouse
ReplicatedMergeTree

19.5.5

Worker
Node

Zookeeper

Query Node

ClickHouse

Query Node

ClickHouse

...

...

ETL Service

HW RAID10

ClickHouse
ReplicatedMergeTree

19.5.5

Worker
Node

HW RAID10

ClickHouse
ReplicatedMergeTree

19.5.5

Worker
Node

HW RAID10

Vanilla ClickHouse (Pain points recap)

ClickHouse
ReplicatedMergeTree

19.5.5

Worker
Node

Zookeeper

Query Node

ClickHouse

Query Node

ClickHouse

...

...

ETL Service

HW RAID10

ClickHouse
ReplicatedMergeTree

19.5.5

Worker
Node

HW RAID10

ClickHouse
ReplicatedMergeTree

19.5.5

Worker
Node

HW RAID10

Hardware limitation (HW RAID
random crash with potential
data loss, no new RAID
machines, disk space shortage)

1. Mysterious read only tables

2. Dead locks in distributed
DDL

No hard limit on memory, can
be OOM killed

Vanilla ClickHouse (After)

ClickHouse
ReplicatedMergeTree

20.8.1

Worker
Node

Zookeeper

Query Node

ClickHouse

Query Node

ClickHouse

...

...

ETL Service

JBOD

ClickHouse
ReplicatedMergeTree

20.8.1

Worker
Node

JBOD

ClickHouse
ReplicatedMergeTree

20.8.1

Worker
Node

JBOD

Things we learned in rolling upgrade

• Disable DDL operations or else ReplicatedMergeTree would be stuck at
some unrecognizable entry and data insertion will eventually stop

• Do not allow new instances to be leader, or else the new instances
assign merges aggressively and the old instances might OOM. Also
need to disable index_granularity_bytes and write_final_mark
• Bonus point: Prepare to recovery data files

from broken marks (kudos to Alexey)

• Distributed queries should be sent to new instances to get correct
results

Things we did after using JBOD

• Automatically recover parts when some disk is broken

• Diagnose bad IO utilization and tune disk settings

• Observe read clustering and tail latency issue, solved by balanced
JBOD read

• Balance query related data files over JBOD array (WIP)

JBOD disk auto-recovery

• Each local disk spawns a disk checker thread, which gives three states: broken,
healthy, recovered.

• Disk checker will automatically transit disks from healthy to broken or broken to
recovered. One need to create a .recover file in the disk path to bring recovered into
healthy (avoid flaky disks)

• Each ReplicatedMergeTree table constantly checks if a part is on an unhealthy disk
and starts to recover all related parts.

• Whenever a query scans a broken part, it starts to recover instantly.

https://github.com/ClickHouse/ClickHouse/pull/13544

Some test results of JBOD

• Disk read-ahead tuning benchmark using long running queries

Some test results of JBOD

• Disk read-ahead tuning benchmark using long running queries

More than 100% improvement

Balanced read among JBOD disks

• Avoid read clustering and tail latency

https://github.com/ClickHouse/ClickHouse/pull/16423

Significant improvements, more than 400%

Balanced data among JBOD disks (WIP)

• Focused on long running queries targeting for given partitions (usually
a day)

• Lower max_bytes_to_merge_at_max_space_in_pool to have smaller but
more parts (hopefully gets better balanced)

• Currently balance via ALTER PART MOVE in crontab manner

• Eventually will have automatic part balancer over JBOD array

https://github.com/ClickHouse/ClickHouse/pull/16481

Nullable primary key

• Almost 99% of columns are Nullable in production

• Nulls are default to be greater than any other values. It’s trivial to allow
Nullable types appearing in the primary key expression, but a bit tricky
to have index condition work correctly.

• We introduce '-inf' and '+inf’ as two value sentinels and let Null = +inf.
Index processing is extended to handle these sentinels.

https://github.com/ClickHouse/ClickHouse/pull/12455

Index usage optimization (Monotonicity)

• toDate is not satuerated
• toDate will not work when a part doesn’t have a final mark (+Inf)
• toDate might not work when a part’s primary key range outside one monotonic

interval

• Binary operator with a constant argument (notably division)

• Now we can have toDate(timestamp_ms / 1000) work as index column

https://github.com/ClickHouse/ClickHouse/pull/13497

https://github.com/ClickHouse/ClickHouse/pull/14513

Partition predicates optimization

• Prune partition in verbatim way
• Partition expressions can be wrapped in non-monotonic functions, such as

hashing and modulo.

• We use the invariant: Partition value is fixed in each part, and filter parts with
that value and given predicates.

• Instant count() with partition predicates
• We use similar technology to select parts that are always true and filter parts

that are always false. When there is nothing left, we return the count

https://github.com/ClickHouse/ClickHouse/pull/16253

https://github.com/ClickHouse/ClickHouse/pull/15074

Consistent efforts in the open-source field

• Column transformers

• untuple (feat. Nikolai)

• CTE and global with

• protobuf format schema via HDFS

• View function

• Fetch partitions from another cluster

• clickhouse-client Introspection usability

Column transformers

• Idea is originated from Big Query and suggested by Alexey

• Three kinds of column matchers: “ *, table.* and COLUMNS(<regexp>)”

are extended to do column transformations

https://github.com/ClickHouse/ClickHouse/pull/14233

Column transformers

• Some examples

Column transformers

• Useful for INSERT SELECT

• Schema transformers?

• Some discussion https://github.com/ClickHouse/ClickHouse/issues/16295

INSERT INTO insert_select_dst(* EXCEPT (middle_a, middle_b)) SELECT * FROM insert_select_src

INSERT INTO table SELECT * FROM file(‘./table/*','CSV’, schema(table EXCEPT …))

untuple (feat. Nikolai)

• The missing feature of named tuples.

https://github.com/ClickHouse/ClickHouse/pull/16242

CTE (common table expression)

• ClickHouse has exotic support of the WITH statement. It’s used to
introduce scalar aliases into the query context.
• WITH 1 AS a, (select * from table) AS b SELECT …

• Sometimes we need to have named subqueries introduced as
table objects (not scalars). The syntax is consistent with standard.
• WITH s AS (select * from table) SELECT * from s

https://github.com/ClickHouse/ClickHouse/pull/14771

Near future in kuaishou

• Projections
• Consistent materialized views at part level

• External table powered by elastic search
• Used to serve updates and full text search

• Resource management

Thank You!

