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About me

* Active ClickHouse Contributor
* 200 + valid PRs
* ~40 Stack Overflow Answers
* Doing some code reviews occasionally https://github.com/amosbird

* Graduated from ICT CAS with a Ph.D degree in database

* Currently @kuaishou Data Platform Department



QOutline

* Back in the school days — scenario exploration

* First entry into the industry — OLAP practice

* Consistent efforts In the open-source fleld — novel features
* Looking into the future — current working items



Back In the school days
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Back in the school days ( Lessons learned )

* ClickHouse Is very extensible and portable
* A barebone computational framework (/programs)
* A self-contained portable binary (even on Android)
* A rich set of Input/output interfaces and formats (omnipotent)

* ClickHouse Is friendly to use, and easy to hack
* There are 4 contributors in my lab, some are green hands
* The system Is understandable from top to bottom

* ClickHouse can solve real problems



Back in the school days ( Lessons learned )

* ClickHouse Is very extensible and portable
* A barebone computational framework (/programs)
* A self-contained portable binary (even on Android)

* Arich set of “If some system works a little faster than tent)
ClickHouse on some degenerate query, this
* ClickHouse is means that | have not yet optimized the code,
* There are 4 and I will do it tomorrow.” — Alexey Milovidov s
* The system Is understandable from top to bottom

* ClickHouse can solve real problems



First entry into the industry

* @kuaishou for ~100 days now

* Interesting setups
* Multiple clusters with a proxy service portal
* Frontend of ClickHouse management
* ETL pipelines from Hive and Kafka
* Two kinds of ClickHouse clusters

* Demanding Issues
* HW RAID crash and IO inefficiency
* Query optimization (mostly indices)
* Resource management



Full picture of our ClickHouse service
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Full picture of our ClickHouse service
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Full picture of our ClickHouse service
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Full picture of our ClickHouse service
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Multiple isolated clusters of ClickHouse to
I serve either general or special applications.
S22 OPen There are mainly two kinds of clusters:

1. Vanilla ClickHouse (general and realtime)

2. ClickHouse on HDFS (huge static datasets)



Full picture of our ClickHouse service
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Full picture of our ClickHouse service
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Full picture of our ClickHouse service
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Full picture of our ClickHouse service

Handmade scripts to collect various metrics
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ClickHouse on HDFS
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ClickHouse on HDFS
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ClickHouse on HDFS

Hosting data parts on HDFS:

Shardl (bucket_1,2,3...)) Cluster
ClickHouse ClickHouse Manager . '
HDFSMergeTree HDFSMergeTree 1. ETL service generate compact part files

on HDFS, with host affinity based on
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2. Specialized HDFSMergeTree engine to

Part files on HDFS read compact parts from HDFS, usually

via short-circuit read
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o ${cluster}/${bucket 2}/${db}/${table}/b.dat (Hostl;Host2) . .
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Vanilla ClickHouse (Before)
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Vanilla ClickHouse (Pain points recap)
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Vanilla ClickHouse (After)
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Things we learned In rolling upgrade

* Disable DDL operations or else ReplicatedMergeTree would be stuck at
some unrecognizable entry and data insertion will eventually stop

* Do not allow new instances to be leader, or else the new instances
assign merges aggressively and the old instances might OOM. Also
need to disable /ndex granularity bytes and write final mark

* Bonus point: Prepare to recovery data files _ 2
from broken marks (kudos to Alexey)

* Distributed queries should be sent to new Instances to get correct
results



Things we did after using JBOD

* Automatically recover parts when some disk I1s broken
* Diagnose bad |0 utilization and tune disk settings

* Observe read clustering and tail latency issue, solved by balanced
JBOD read

* Balance query related data files over JBOD array (WIP)



JBOD disk auto-recovery

Each local disk spawns a disk checker thread, which gives three states: broken,

Disk checker will automatically transit disks from thy to broken or broken to
. One need to create a .recover file in the disk path to bring INto
(avoid flaky disks)

Each ReplicatedMergeTree table constantly checks if a part is on an un disk
and starts to recover all related parts.

Whenever a query scans a broken part, it starts to recover instantly.

https://github.com/ClickHouse/ClickHouse/pull/13544



Some test results of JBOD

* Disk read-ahead tuning benchmark using long running queries
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Some test results of JBOD

* Disk read-ahead tuning benchmark using long running queries

More than 100% improvement
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Balanced read among JBOD disks

* Avoid read clustering and tall latency

Significant improvements, more than 400%
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https://github.com/ClickHouse/ClickHouse/pull/16423



Balanced data among JBOD disks (WIP)

. Fodcus)ed on long running queries targeting for given partitions (usually
a day

* Lower max bytes to merge _at max space_in_pool/to have smaller but
more parts (hopefully gets better balanced)

* Currently balance via ALTER PART MOVE In crontab manner

* Eventually will have automatic part balancer over JBOD array

https://github.com/ClickHouse/ClickHouse/pull/16481



Nullable primary key

* Almost 99% of columns are Nullable in production

* Nulls are default to be greater than any other values. It’s trivial to allow
Nullable types appearing in the primary key expression, but a bit tricky
to have index condition work correctly.

* We introduce '-inf" and "+inf’ as two value sentinels and let Null = +inf.
Index processing Is extended to handle these sentinels.

https://github.com/ClickHouse/ClickHouse/pull/12455



Index usage optimization (Monotonicity)

* toDate Is not satuerated
* toDate will not work when a part doesn’t have a final mark (+Inf)

* toDate might not work when a part’s primary key range outside one monotonic
Interval

* Binary operator with a constant argument (notably division)

* Now we can have tobate(timestamp _ms / 1000) work as index column

https://github.com/ClickHouse/ClickHouse/pull/13497
https://github.com/ClickHouse/ClickHouse/pull/14513



Partition predicates optimization

* Prune partition in verbatim way

* Partition expressions can be wrapped In non-monotonic functions, such as
hashing and modulo.

* We use the invariant: Partition value is fixed in each part, and filter parts with
that value and given predicates.

* Instant count() with partition predicates

* We use similar technology to select parts that are always true and filter parts
that are always false. When there is nothing left, we return the count

https://github.com/ClickHouse/ClickHouse/pull/16253
https://github.com/ClickHouse/ClickHouse/pull/15074



Consistent efforts in the open-source field

* Column transformers
* untuple (feat. Nikolal)
* CTE and global with
* protobuf format schema via HDFS

* View function
* Fetch partitions from another cluster
* clickhouse-client Introspection usability



Column transtformers

* |dea Is originated from Big Query and suggested by Alexey

* Three kinds of column matchers: « *, table.* and COLUMNS(<regexp>)”
are extended to do column transformations

https://github.com/ClickHouse/ClickHouse/pull/14233



Column transtformers

* Some examples

SELECT * APPLY(sum) SELECT columns_transformers.* EXCEPT(j) APPLY(avg)
FROM columns_transformers FROM columns transformers

sum(i)——sum(j)——sum(k)

avg(i)—avg(k)
220 18 347 110 | 173.

SELECT columns_transformers.* REPLACE(j + 2 AS j, 1 + 1 AS 1) APPLY(avg)
FROM columns_transformers

avg(plus(i, 1))—avg(plus(j, 2))——avg(k)
111 11 173.




Column transtformers

* Useful for INSERT SELECT

INSERT INTO insert_select_dst(* EXCEPT (middle_a, middle_b)) SELECT = FROM insert_select_src

* Schema transformers?

INSERT INTO table SELECT = FROM file("./table/*",/CSV’, schema(table EXCEPT -+))

* Some discussion https://github.com/ClickHouse/ClickHouse/issues/16295



untuple (feat. Nikolal)

* The missing feature of named tuples.

SELECT

untuple(argMax(tuple(* EXCEPT(key)), v1))

_q_
3
=
2
5
1
6
7
8

https://github.com/ClickHouse/ClickHouse/pull/16242



CTE (common table expression)

* ClickHouse has exotic support of the WITH statement. It's used to
Introduce scalar aliases into the guery context.

* WITH 1 AS 3, (select * from table) AS b SELECT -

* Sometimes we need to have named subqgueries introduced as
table objects (not scalars). The syntax Is consistent with standard.

* WITH s AS (select = from table) SELECT * from s

https://github.com/ClickHouse/ClickHouse/pull/14771



Near future in kuaishou

* Projections
* Consistent materialized views at part level

* External table powered by elastic search
* Used to serve updates and full text search

* Resource management
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