User Group Analysis with ClickHouse
In Bytedance

Niu Zhaojie
zhaojie.niu@bytedance.com

Jii| ByteDance Z Tz

mailto:zhaojie.niu@bytedance.com

I Outline

e Background
e First Experience of ClickHouse

® Problem and Optimization

I Outline

e Background
e First Experience of ClickHouse

® Problem and Optimization

I Business Background

e Help business to increase Daily Active Users (DAU).

e DAU = new users + retained users + returning users.

e Fvaluate the impact on DAU.

I Business Background - Story

® One business find the DAU is reduced after a new release.

Business Background - Methodology

¢ The common methodology used to improve business.

Problem finding
« Setup key indicator

. Y 4 -
Performance tracking ‘ Analysis
* Follow up the effect. '/ AR

. Understand the root cause.

.

6 * Propose solutions.
|

Release Validation
» Release in time. Evaluate effect for different solutions.
 Decide a final solution.

Business Background - Platform

e Platform for user group analysis.
® Fixed query pattern.
® |[ndicator calculation is complicated.
e Total volume is large.
e Platform for multi-dimensional analysis.

o Complex query pattern.

e Multiple data sources/models.

(e,g., user group)

N\

r o)
For specific scenario.

J

-

General scenario

(e,g., multi-dimensional)

_J

Technical Decision

e Existing solution (commercial, open—source).
e The requirements changes quickly and are diverse (PMs, Users).

® | ow cost, highly flexible.

Open source + Self development

I Using ClickHouse

¢ High available. ® ReplicatedMergeTree.

® Fasy extension. ClickHouse
e High scalability. '

® |nteractive response. ® High performance.

Engine is easy to customize. (SQL & C++)

Multi server & shared nothing design.

I Outline

e Background
® First Experience of ClickHouse

® Problem and Optimization

Using ClickHouse at Early Stage - Ingestion

e Simplify the data ingestion for end users.

~

\—

~

External data source

(offline, realtime)
_

b

-

Data Ingestion Service

Task register.

Authorization.

Meta management.
Ingestion task management

-

ClickHouse

N— S

I Using ClickHouse at Early Stage - SQL Enhancement

e SQL-based indicator calculation.
e UDAF enhancement.
e SQL grammar enhancement.

® Data visualization tools.

Using ClickHouse at Early Stage - Experience

® Feasibility — validated successfully in real applications.
® |nteractive user experience.

e Scale well.

e [ast iteration.

e Availability satisfies requirements in most case.

Scale further -> More users -> New challenges.

I Outline

e Background
e First Experience of ClickHouse

® Problem and Optimization

I Data Related Issue - Massive Data

® Heavy data ingestion task impacts other services.

e | imitation of local storage.

\

e Construct data outside ClickHouse for high load business.

e | ocal + shared (hot/cold tired storage).

Massive Data - Optimization

® Scale on—-demand

Data Ingestion

Service ClickHouse

Spark Job
/;{ Local Storage]
-
N

- =
- / Be Cold
ot

e Compute resource/IO.

® Storage resource.

- Y
42 g | fes § } \/ . g N N
: ClickH Cold
Cloktouse Pans pane(Gompact .
- c0 g) S oFs Is the elasticity good enough?

I Massive Data - Shared Storage vs Shared Nothing

Exploration on shared storage architecture.

Shared Disk Shared Nothing Shared storage + local cache.

All data is Each node has autonomy over a subset of the data

a2 71 A% N | e Benefit
mg[/ ‘\:] /\j ' / e Better elasticity.
f D /7_
1

o Cloud friendly.

® | imitation

e Extra dependency.

e Carefully network design.

Figure is from http://www.benstopford.com/2009/11/24/understanding-the-shared-nothing-architecture/

I Data Related Issue - Dynamic Schema

® Data model:

e Dynamic schema (JSON format).

e [exibility vs Performance.

e Map type
® [Fasy extension.

o Specific query mode to achieve good performance.

Dynamic Schema - Solution

e Extend json to columns by keys.

—

PART

column{'a’} ==>__column_a

—

n.value

| — N N—

\

PART

/

column{'a’} ==> column.key & column.value

e [otal keys are controllable.

e Small files issues.

Dynamic Schema - Enhancement

{a"1,'b"2, ...}
{'a"4,'c"10,....} Ij>

__column_a _ _cplumn_b columnl c

Ju— —_— —

Map(String, Int) column

part e Quota for map key.

olumn_a

0

—\ e Compact map storage format.

offsets

olumn_b

0

column|_c

Part

Compact Model

I High Availability Related Issue

e Data partitions keep increasing. ® Recovery time become longer.
¢ Business extension. e ReplicatedMergeTree (ZK) becomes bottleneck.

® Nodes Failures become more. e Operation becomes more complicated.

I Failure Recovery

® Restarting

* Software bug. Metadata need long time to load

e Hardware issue. # (~ X hours or even more

In Bytedance)
e OOM.

e System upgrade.

Failure Recovery - Optimization

e Persistent metadata (part info).

e Cache hot meta in memory.

® Result
® No obvious performance loss.
e Can support more parts in single node.

e Restarting: hours —> minutes.

o

Part Cache

/

Table N\

Merge TreeMeta

MetaEntry

S OO

rocksdb

s

FileSystem

I High Availability Other Issue

e Zookeeper high load: HAMergeTree (Optimized version of ReplicatedMergeTree)

® Operation platform.

More detailes: https://live.bytedance.com/8889/4218416

https://live.bytedance.com/8889/4218416

Performance Related Issues

® Many reasons can cause performance issue.

e Common approach for performance optimization.
¢ Adjustment from application side.
® Customized for specific application.

e Materialized view.

More detailes: https://live.bytedance.com/8889/4218416

https://live.bytedance.com/8889/4218416

Future Work

e Shared storage architecture.
e Containerization.

® Resource usage and isolation.
® Service stability.

e Data lake support.

I We Are Hiring

® | ocation: CN, SG

e My email: zhaojie.niu@bytedance.com

Jii! ByteDance F TRk

